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Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to
optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we
test the hypothesis that stimulation’s behavioral and physiological effects depend on the stimulation target’s anatomical and functional
network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate
classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC)
during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white
matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to
the brain’s memory network. These targets also reduced low-frequency activity in this network, an established marker of successful
memory encoding. These data reveal how anatomical and functional networks mediate stimulation’s behavioral and physiological
effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing
neuromodulation through improved stimulation targeting.
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Introduction
Direct electrical stimulation of the human brain can manipulate
circuits underlying perception, cognition, and action (Scangos,
Makhoul, et al. 2021; Siddiqi et al. 2022). Such stimulation has
been used to treat network syndromes of brain dysfunction, sug-
gesting that stimulation influences a broader network of brain
regions beyond the stimulated location (Limousin et al. 1998;
Mayberg et al. 2005; Deuschl et al. 2006; Lozano and Lipsman 2013;
Geller et al. 2017; Jobst et al. 2017; Bouthour et al. 2019; Scangos,
Khambhati, et al. 2021). Stimulation can also modulate behaviors,
such as learning and memory, that depend on the coordinated
activity of a network of brain regions (Voytek and Knight 2015;
Keerativittayayut et al. 2018; Staresina and Wimber 2019; Mankin
and Fried 2020; Das and Menon 2021).

Although increasingly used as a therapeutic and experimen-
tal tool, variability in outcomes poses a critical challenge, in
part because stimulation’s mechanisms of action remain poorly
understood. Theoretical accounts evolved from models of local
disruption of pathological activity (Benabid et al. 2004) to mod-
ulation of the broader network of areas are connected to the
stimulated location (McIntyre and Hahn 2010; Ashkan et al. 2017).

If stimulation’s effects are best understood at the network level,
perhaps variability in individual network structure can explain
the variability in physiological and behavioral outcomes.

In support of this idea, applying stimulation to gray mat-
ter, the gray–white matter boundary, or specific white matter
fibers, determines the spread of physiological effects through
the network (Solomon et al. 2018; Paulk et al. 2022). Previous
research has demonstrated different excitation thresholds for
neural elements in white and gray matter (Nowak and Bullier
1998), which may explain variability in the spatial extent over
which stimulation exerts its effects (Histed et al. 2009). Compared
with gray matter stimulation, white matter stimulation leads to
more broadly distributed excitation in downstream areas (Mohan
et al. 2020; Crocker et al. 2021; Paulk et al. 2022). White matter
pathways also constrain stimulation’s downstream functional
effects (Lujan et al. 2013; Khambhati et al. 2019; Stiso et al. 2019).
Behaviorally, stimulation of white matter has led to remission
in depression (Mayberg et al. 2005), slowed cognitive decline in
Alzheimer’s (Hamani et al. 2008; Lozano et al. 2016), and enhanced
memory in epilepsy (Suthana et al. 2012; Titiz et al. 2017; Mankin
et al. 2021). However, previous research has yet to show that
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variability in stimulation’s downstream effects depend on white
vs. gray matter targeting in a way that predictably modulates
episodic memory performance.

In addition to the brain’s anatomical architecture, research
shows that functional architecture also mediates the spread and
persistence of stimulation’s physiological effects (Keller et al.
2011, 2018; Fox et al. 2014, 2020). Previous work further suggests
this relation to be frequency-specific. For example, stimulating
targets in the medial temporal lobe leads to greater downstream
changes in low-frequency (5–13 Hz) activity in brain regions that
are strongly connected, at low-frequencies, to the stimulated site
(Solomon et al. 2018). There are a variety of cognitive functions,
including episodic memory, that have been linked to the modu-
lation of low-frequency activity (Burke et al. 2013; Colgin 2013;
Donoghue et al. 2020; Griffiths et al. 2021; Koster and Gruber 2022).
Therefore, these physiological findings suggest that stimulating
targets with strong low-frequency network connectivity could
reliably modulate such behaviors, although this idea has yet to
be tested. If such stimulation does affect broad low-frequency
activity in a way that is related to behavior, it would be consistent
with the notion that low-frequency activity coordinates function
across a distributed neural network. Such coordination may be
especially important for dynamic cognitive functions such as
episodic memory (Watrous et al. 2013; Solomon et al. 2017) and
would suggest that low-frequency activity may be a more effective
target for modulation with stimulation than high-frequency activ-
ity (Fries 2009; Fell and Axmacher 2011; Harris and Gordon 2015).

We hypothesized that anatomical and functional characteris-
tics of the stimulation target represent key variables that control
the effect of stimulation on the brain’s memory network. We
applied stimulation in closed-loop in 47 patients while they par-
ticipated in an episodic memory task (free recall). We stimulated
57 targets located in the lateral temporal cortex (LTC), with the
timing of stimulation determined by multivariate classification
of neural activity during the encoding phase of the memory task.
Activity in the LTC correlates with episodic memory performance
(Ojemann et al. 1988; Kim 2011; Burke et al. 2014; Kragel et al.
2017), and stimulation studies targeting this area suggest that it
may be an effective node for modulating the memory network
(Bickford et al. 1958; Perrine et al. 1994; Moriarity et al. 2001;
Flöel et al. 2008; Boggio et al. 2009; Curot et al. 2017; Ezzyat
et al. 2018; Kucewicz et al. 2018). Using patient-specific data, we
characterized each stimulation target based on its proximity to
the nearest white matter pathway, as well as its low-frequency
resting-state functional connectivity with the brain’s memory-
encoding network. We found that closed-loop LTC stimulation
improves memory performance relative to random stimulation,
extending prior evidence that LTC stimulation modulates episodic
memory (Ezzyat et al. 2018; Kucewicz et al. 2018). Furthermore, we
reveal that stimulation target proximity to white matter and func-
tional connectivity predict both stimulation’s effects on memory
performance and changes in rhythmic low-frequency activity
involved in successful memory encoding. These data suggest that
in order to use stimulation effectively as a therapy for memory
dysfunction, structural and functional characteristics of the stim-
ulation target can be used to predictably modulate physiology and
behavior (Ezzyat and Suthana In Press).

Materials and methods
Participants
Forty-seven patients undergoing intracranial electroencephalo-
graphic monitoring as part of clinical treatment for drug-resistant

epilepsy were recruited to participate in this study. In total, n = 57
brain locations were stimulated: 38 patients were stimulated in
one location, 8 patients were stimulated in two separate locations,
and 1 patient was stimulated in three separate locations. Only one
location was stimulated per session. Of the current dataset, data
from 14 patients were included in an earlier publication (Ezzyat
et al. 2018). All of the presently reported analyses and results are
novel.

Data were collected as part of a multicenter project designed
to assess the effects of electrical stimulation on memory-related
brain function. Data were collected at the following centers:
University of Texas Southwestern Medical Center (Dallas, TX),
Dartmouth-Hitchcock Medical Center (Lebanon, NH), Thomas Jef-
ferson University Hospital (Philadelphia, PA), Emory University
Hospital (Atlanta, GA), Mayo Clinic (Rochester, MN), Hospital of
the University of Pennsylvania (Philadelphia, PA), and Columbia
University Medical Center (New York, NY). The research protocol
was approved by the IRB at each hospital and informed consent
was obtained from each participant. Electrophysiological data
were collected from electrodes implanted subdurally (grid/strip
configurations) on the cortical surface and/or electrodes within
the brain parenchyma (depth electrodes). The clinical team has
determined the placement of the electrodes based on the epilep-
togenic monitoring needs of the patient.

Anatomical localization
Cortical surface regions were delineated on pre-implant whole
brain volumetric T1-weighted MRI scans using Freesurfer (Fischl
et al. 2004) according to the Desikan-Kiliany atlas (Desikan et al.
2006). Whole brain and high-resolution medial temporal lobe vol-
umetric segmentation was also performed using the T1-weighted
scan and a dedicated hippocampal coronal T2-weighted scan with
Advanced Normalization Tools (ANTS) (Avants et al. 2008) and
Automatic Segmentation of Hippocampal Subfields (ASHS) multi-
atlas segmentation methods (Yushkevich et al. 2015). Coordinates
of the radiodense electrode contacts were derived from a postim-
plant CT and then registered with the MRI scans using ANTS. Sub-
dural electrode coordinates were further mapped to the cortical
surfaces using an energy minimization algorithm (Dykstra et al.
2012). Two neuro-radiologists reviewed cross-sectional images
and surface renderings to confirm the output of the automated
localization pipeline. Stimulation targets localized to the inferior,
middle, or superior temporal gyri (left or right hemispheres) were
classified as LTC. For region of interest (ROI) analyses, electrodes
were assigned to regions using Freesurfer atlas labels (IFG: inferior
frontal gyrus; MFG: middle frontal gyrus; SFG: superior frontal
gyrus; MTLC: medial temporal lobe cortex; HIPP: hippocampus;
ITG: inferior temporal gyrus; MTG: middle temporal gyrus; STG:
superior temporal gyrus; IPC: inferior parietal cortex; SPC: supe-
rior parietal cortex; OC: occipital lobe).

Verbal memory task
Across participants, data were collected from two behavioral
tasks: standard delayed free recall and categorized delayed free
recall. In both tasks, participants were instructed to study lists of
words for a later memory test; no explicit encoding task was used.
Lists were composed of 12 words presented in either English or
Spanish, depending on the participant’s native language. In the
standard free recall task, words were selected randomly from a
pool of common nouns (https://memory.psych.upenn.edu/Word_
Pools). In the categorized free recall task, the word pool was
constructed from 25 semantic categories (e.g. fruit, furniture, and
office supplies). Each list of 12 items in the categorized version
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of the task consisted of four words drawn from each of three
categories. Overall, n = 19 participated in standard free recall only;
n = 26 participated in categorized free recall only; and n = 2 partic-
ipated in both free and categorized recall (in separate sessions).

Immediately following the final word in each list, participants
performed a distractor task (to attenuate the recency effect in
memory, length = 20 s) consisting of a series of arithmetic prob-
lems of the form A + B + C = ??, where A, B, and C were randomly
chosen integers ranging from 1 to 9. Following the distractor task,
participants were given 30 s to verbally recall as many words as
possible from the list in any order; vocal responses were digitally
recorded and later manually scored for analysis. Each session
consisted of 25 lists of this encoding-distractor-recall procedure.

EEG recording and analysis
Electrophysiological recording and stimulation was conducted
using a variety of systems across the sites over which the project
was conducted. Recording and stimulation equipment included
clinical EEG systems (Nihon Kohden EEG-1200, Natus XLTek EMU
128, or Grass Aura-LTM64), equipment from Blackrock Microsys-
tems (Salt Lake City, UT), as well as the External Neural Stimulator
(ENS) Medtronic Inc. (Minneapolis, MN). Data were sampled at
500, 1,000, or 1,600 Hz (depending on the clinical site). During the
sessions, a laptop recorded behavioral responses (vocalizations,
key presses), synchronized to the recorded EEG via transmitted
network packets.

Intracranial electrophysiological data were filtered to attenu-
ate line noise (5-Hz band-stop fourth-order Butterworth, centered
on 60 Hz). We referenced the data using a bipolar montage (Burke
et al. 2013) by identifying all pairs of immediately adjacent con-
tacts on every depth, strip, and grid and taking the difference
between the signals recorded in each pair. The resulting bipolar
timeseries was treated as a virtual electrode and used in all
subsequent analysis. For the purposes of anatomical localization,
we used the midpoint of the bipolar pair as the location for this
virtual electrode. We used the same midpoint approach to localize
stimulation targets and to measure stimulation target distance to
white matter (see below).

Multivariate classification of memory
We performed spectral decomposition (8 frequencies from 6 to
175 Hz, logarithmically spaced; Morlet wavelets; wave number = 5)
for 1,366 ms epochs from 0 to 1,366 ms relative to word onset.

Mirrored buffers (length = 1,365 ms) were included before and
after the interval of interest to avoid convolution edge effects.
The resulting time–frequency data were then log-transformed,
averaged over time, and z-scored within session and frequency
band across word presentation events. For a subset of participants,
we also performed the same spectral decomposition procedure on
record-only data from the memory recall phase of each list. These
data were then used in addition to the encoding data to train
the classifier (Kragel et al. 2017). To do so, we computed spectral
power for the 500-ms interval preceding a response vocalization,
as well as during unsuccessful periods of memory search (the first
500 ms of any 2,500-ms interval in which no recall response was
made). For both trial types (correct vocalizations and unsuccessful
search periods), we further stipulated that no vocalization onsets
occurred in the preceding 2,000 ms.

Our closed-loop stimulation approach was based on using indi-
vidualized memory classifiers to control the timing of stimulation
in response to brain activity. Thus, after collecting at least three
record-only sessions from an individual patient, we then used
the data as input to a logistic regression classifier that would

trigger closed-loop stimulation during the later stimulation ses-
sion(s). To build the classifier, we used patterns of brain activity
collected during record-only sessions and trained the classifier
to discriminate words that were recalled vs. not recalled. The
input features were spectral power at the eight analyzed frequen-
cies × N electrodes (Fig. 1A). We used L2-penalization to prevent
overfitting (Hastie et al. 2001) and set the penalty parameter (C)
to 2.4 × 10−4 based on the optimal penalty parameter calculated
across our large preexisting dataset of free-recall participants
(Kragel et al. 2017; Ezzyat et al. 2018). We weighted the penalty
parameter separately for each participant in inverse proportion to
their number of recalled and not recalled words; this was done so
that the model would learn equally from both classes (Hastie et al.
2001). Classification analyses were programmed using either the
Matlab implementation of the LIBLINEAR library (Fan et al. 2008)
or the Python library scikit-learn (Pedregosa et al. 2011).

For the Closed-loop group (34 participants, n = 40 stimulation
targets), classifiers were trained using the true mapping of fea-
tures (spectral power × electrodes) to recall outcomes. In contrast,
for the Random group (13 participants, n = 17 stimulation targets),
a technical error in labeling features during classifier training led
to classifiers that were trained on permuted data, eliminating the
true mapping between neural activity on each trial and recall
outcomes. This provided a natural experiment for testing whether
the closed-loop nature of stimulation can enhanced the efficacy
of LTC stimulation.

To assess the importance of individual features to the
classifier’s performance, we calculated the following forward
model (Haufe et al. 2014):

A = Σ × w
σ 2

ŷ

,

where �x is the data covariance matrix, w is the vector of feature
weights from the trained classifier, and σ 2

ŷ is the variance of the
logit-transformed classifier outputs for all recalled/not recalled
events ŷ. Positive values in A suggest a positive relation between
power for a given feature and successful memory recall. We
computed A separately for each participant (averaging features
within anatomical ROIs based on the Freesurfer labels derived
from anatomical localization of electrodes) before conducting
across-participant statistical tests (Fig. 1D).

Closed-loop stimulation
At the start of each stimulation session, we determined the safe
amplitude for stimulation using a mapping procedure in which
stimulation was applied at 0.5 mA, while a neurologist monitored
for afterdischarges. This procedure was repeated, increasing the
amplitude in steps of 0.5 mA, up to a maximum of 1.5 mA for
depth contacts and 3.5 mA for cortical surface contacts. These
maximum amplitudes were chosen to be below the afterdischarge
threshold and below accepted safety limits for charge density
(Shannon 1992). For each stimulation session, we passed electrical
current through a single pair of adjacent electrode contacts. The
locations of implanted electrodes were determined strictly by the
monitoring needs of the clinicians (recording sites depicted in
Fig. 1B). We therefore used a combination of anatomical and func-
tional information to select stimulation sites, prioritizing (if avail-
able) targets in the middle temporal gyrus (stimulation targets
depicted in Fig. 2A). This choice was guided by prior work iden-
tifying the middle temporal gyrus as an effective target for modu-
lating memory with stimulation (Ezzyat et al. 2018; Kucewicz et al.
2018). Stimulation was delivered using charge-balanced biphasic
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Fig. 1. Multivariate decoding and classification of memory. A) Participants performed at least three sessions of the free recall task while being
monitored with intracranial EEG. Multivariate classifiers were trained on whole-brain patterns of spectral activity to predict subsequently recalled
vs. not recalled words. B) Recording electrode locations for all participants in the closed-loop and random groups rendered on the Freesurfer average
brain. C) Eachparticipant’s multivariate classifier then served as their personalized model to trigger stimulation. Classifiers trained on record-only data
generalized to the stimulation session(s) for the closed-loop group (P = 6.14 × 10−7) and outperformed classifiers for the random group (P = 2.73 × 10−5).
D) An analysis of feature importance for classifiers from the closed-loop group showed that successful memory states were associated with decreases
in low-frequency activity and increases in high-frequency activity.

rectangular pulses (pulse width = 300 μs) at either 50-, 100-, or
200-Hz frequency (a single frequency was chosen for each subject)
and was applied for 500 ms in response to classifier-detected poor
memory states (see below). Participants performed one practice
list followed by 25 task lists: lists 1–3 were used as a baseline for
normalizing the classifier; lists 4–25 consisted of 11 lists each of
Stim and NoStim conditions, randomly interleaved. NoStim lists
were identically structured to Stim lists, except that stimulation
was never delivered in response to classifier output.

To determine (in actuality) how well the classifier predicted
recalled and forgotten words in a given participant’s stimulation
session, we again used AUC. We used the true classifier outputs
and true recall outcomes from the NoStim lists to calculate the
classifier generalization AUC for the stimulation sessions. To gen-
erate the corresponding receiver operating characteristic curves
for visualization (Fig. 2C), we modeled the classifier outputs for
recalled and not recalled words using signal detection theory
(Wixted 2007). We did this by using the classifier outputs to
estimate the mean and variance of hypothetical (normal) distri-
butions of memory strength for recalled and not recalled words.
We then generated a curve relating true and false positive rates
by varying the assumed decision criterion (Wixted 2007).

Analysis of memory performance
All participants completed at least three sessions of the record-
only task (for purposes of classifier training) and at least one
session of the stimulation task. For the stimulation session(s), we
calculated stimulation’s effect on recall performance as follows:

Δ = RS − RNS

RNS
× 100,

where RS is the average recall for stimulated lists and RNS is the
average recall for nonstimulated lists. Because the first three lists
of every stimulation session were always nonstimulated (used for
normalization of the classifier input features for that session), we
excluded these lists from the calculation of RNS to avoid introduc-
ing a temporal order confound (Ezzyat et al. 2018). All participants
were required to demonstrate a minimum RNS = 8.33% (1 out of 12
words per list) for inclusion in the sample.

Calculation of stimulation target distance to
white matter
Using Freesurfer to segment patients’ T1 MRI scan, we identified
white-matter vertex locations, and then we calculated the dis-
tance between the stimulation location (midpoint of the bipolar
pair) and the nearest white matter vertex. These distances were
then split into thirds in order to categorize stimulation sites as
Near, Mid, or Far relative to the nearest white matter (Solomon
et al. 2018; Mohan et al. 2020).

Calculation of stimulation target node strength
We adapted a previously reported method for calculating the
resting-state functional connectivity between channels using the
MNE-Python software package (Gramfort et al. 2014; Solomon
et al. 2018). We extracted data from nontask periods of the record-
only sessions of each patient and used the data to calculate the
coherence between each pair of bipolar channels in the patient’s
montage. The coherence (Cxy) between two signals is the normal-
ized cross-spectral density. This measure reflects the consistency
of phase differences between signals at two electrodes, weighted
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Fig. 2. Closed-loop stimulation improves memory performance. A) Stimulation target locations for the closed-loop and random groups. B) Closed-loop
stimulation strategy. C) Closed-loop LTC stimulation improved memory performance (P = 0.01), while random stimulation did not. Error bars in C reflect
s.e.m.

by the correlated change in spectral power at both sites

Cxy = Sxy

SxxSyy
,

where Sxy is the cross-spectral density between signals at
electrodes x and y; Sxx and Syy are the autospectral densities
at each electrode. We used the multitaper method to estimate
spectral density (Bronez 1992). We used a time-bandwidth product
of 4 and a maximum of 8 tapers (tapers with spectral energy <0.9
were removed), computing coherence for frequencies between
5 and 13 Hz. We computed interelectrode coherence within
nonoverlapping 1-s windows of data collected during a 10-s
baseline (countdown) period that occurred at the start of each
word list. The resulting coherence values between each pair of
electrodes were then regressed on the Euclidean distance between
each pair of electrodes, to account for the correlation between
interelectrode coherence and distance (Solomon et al. 2018). This
distance-residualized measure of coherence was then used in the
node-strength calculation. We repeated this entire procedure
for calculating high-frequency functional connectivity in the
45–90 Hz range.

Analysis of physiological effects of stimulation
To assess the effect of LTC stimulation on neural activity, we
analyzed recording channels (i.e. those that were not stimulated)
and we compared stimulation-evoked spectral power separately
at low and high frequencies. We first excluded electrodes exhibit-
ing nonphysiological poststimulation artifacts (such as amplifier

saturation/relaxation) using three different measures of the EEG
timeseries before and after stimulation. We compared intervals
before and after stimulation for changes in variance using an
F-test and for changes in signal amplitude using a t-test. We
additionally fit a polynomial function to the timeseries before
and after each stimulation event and used a t-test to compare
the resulting parameter estimates for the quadratic term. We
calculated these three measures using the signal from −400 to
−100 ms relative to stimulation onset and from 100 to 400 ms
relative to stimulation offset. In order to select statistical thresh-
olds for each measure, we conducted the same analysis on each
participant’s record-only data. We then selected P-value thresh-
olds associated with a 5% detection rate in the record-only data
(i.e. false positives). Any channel that was significant on any of
the three measures was excluded from analysis.

To measure stimulation’s effect on low-frequency power, we
extracted spectral power from −600 to −100 ms relative to stimu-
lation onset and from 100 to 600 ms relative to stimulation offset.
We used Morlet wavelets (wave number = 5) to estimate spectral
power for the same set of frequencies used to train the classifier
with buffers to eliminate edge artifacts. The resulting spectral
power estimates were then z-scored within each frequency, sepa-
rately for each session. We then averaged power within each fre-
quency across the time dimension for each prestimulation period
and for each matched poststimulation period. We then subtracted
the prestimulation data from the poststimulation data to yield a
distribution of change in spectral power for each electrode.

We compared the distribution of power changes for stimu-
lation events to the power changes from matched intervals on

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/1/bhad427/7457341 by U

niversity of Pennsylvania Library user on 07 February 2024



6 | Cerebral Cortex, 2024, Vol. 34, No. 1

Fig. 3. Closed-loop stimulation near white matter enhances memory. A) For the closed-loop group, stimulation’s effect on memory depended on the
target distance from the nearest white matter [left, P = 0.007]. The correlation was not significant for the random group [right, P = 0.52]. B) Closed-loop LTC
stimulation improved memory performance for targets located nearest to white matter (P = 0.005). There was no effect for the random group (P = 0.62).
Error regions in A reflect the standard error of the estimate. Error bars in B reflect s.e.m.

NoStim lists. To do so, we calculated spectral power using identical
parameters. However, because there were no actual stimulation
events in NoStim lists, we generated a synthetic distribution of
stimulation onset times by extracting the lag (in milliseconds)
between each word onset and stimulation event in Stim lists,
and sampling randomly from that distribution of onset times to
determine when to extract data relative to word onset events in
NoStim lists.

Finally, we used an independent samples t-test to compare the
distribution of Stim list power differences to the distribution of
NoStim list power differences within each electrode. The resulting
distribution of t-statistics was then averaged across electrodes
to estimate the stimulation-evoked change in power (Fig. 5A).
We then averaged these values separately within clusters of low
and high frequencies that significantly predicted memory perfor-
mance (based on classifier feature importance, Fig. 1D).

Statistics
Data are presented as mean ± standard error of the mean; scatter-
plots show the standard error of the estimate. All statistical com-
parisons were conducted as two-tailed tests. Nonparametric tests
(e.g. Mann–Whitney; Wilcoxon signed rank) were used for nonnor-
mally distributed variables (e.g. white matter distance, Fig. 3A).
To account for the fact that some participants were stimulated
at more than one target (always in separate sessions), we used
linear mixed effects models to assess the effect of stimulation on
memory and differences between the Closed-loop and Random
groups. The models assumed separate intercepts and slopes for
each participant. We also used linear mixed effects models in
analyzing the effects of white matter distance on memory; low-
and high-frequency memory network node strength; and the
effect of node strength on stimulation-evoked physiology. Data
distributions were visually inspected or assumed to be normal for
parametric tests.

Results
Multivariate classifiers identify memory lapses
Our stimulation strategy sought to intercept and rescue periods of
poor memory encoding. To do so, we trained participant-specific
multivariate classifiers to discriminate patterns of neural activity
during record-only sessions of free recall (Fig. 1A). For the Closed-
loop group (n = 40), classifiers were trained using the true mapping
of features (spectral power × electrodes) to recall performance;
for the Random group (n = 17), due to a technical error in label-
ing features (see Materials and methods), classifiers were trained
on permuted features. The recording electrode locations for the

Closed-loop and Random groups appear as spheres in Fig. 1B.
After training the classifiers on record-only data, we used them
in later (independent) sessions to identify poor memory states for
targeting with stimulation.

Our first question was how well the classifiers predicted
memory outcomes during the stimulation sessions (i.e. out-of-
sample generalization). To answer this question, we used data
from NoStim lists in which we obtained classifier predictions
about the probability of recall for each word but did not use these
predictions to trigger stimulation (see Materials and methods).
Using area under the receiver operating characteristic curve as
an index of classification accuracy, we found that classifiers
for the Closed-loop reliably exceeded chance performance
[Mean AUC = 0.62 (chance AUC = 0.50), Wilcoxon signed rank
test P = 5.73 × 10−7]. Closed-loop classifiers also outperformed
classifiers for the Random group (Mann–Whitney U = 586.0,
P = 1.85 × 10−5). As expected, Random classifiers did not exceed
chance (Mean AUC = 0.49, Wilcoxon signed rank test P = 0.55;
Fig. 1C).

To understand what features the classifier used to discrimi-
nate good vs. poor memory encoding states, we used a forward
model for each participant to derive importance estimates for
each feature (Haufe et al. 2014). We averaged the feature impor-
tance values within a set of ROIs separately for each classifier
frequency. Across participants, classifiers predicted successful
memory encoding based on increased high-frequency activity
(especially in frontal, lateral temporal, and medial temporal lobe
areas) and decreased low-frequency activity across much of the
recorded cortex and subcortex (Fig. 1D). This pattern, which we
refer to as the spectral tilt, has been observed in previous studies
to be a biomarker of successful episodic memory encoding and
retrieval (Burke et al. 2014; Long et al. 2014; Ezzyat et al. 2017).

Closed-loop LTC stimulation improves memory
Having established that classifiers in the Closed-loop group reli-
ably discriminate memory encoding states, we next asked if we
could increase memory performance via stimulation of the LTC
(Fig. 2A). Our stimulation strategy was based on detecting poor
memory encoding states and intercepting them with stimulation
(Fig. 2B). For the Closed-loop and Random groups, we compared
recall performance for lists in which we delivered stimulation
(Stim lists) vs. identically structured lists in which we did not
stimulate (NoStim lists, as described above). In the Closed-loop
group, recall was higher on Stim lists compared with NoStim lists
(� = 10.4% ± 4.2; z = 2.5, P = 0.01, Fig. 2C), suggesting that intercept-
ing poor memory encoding states with LTC stimulation enhanced
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recall. In contrast, there was no difference in memory perfor-
mance for the Random group (� = −3.4% ± 6.6; z = −0.52, P = 0.60).
There was a trend for greater memory enhancement for the
Closed-loop compared with the Random group (z = 1.77, P = 0.08).
These findings are the first to compare closed-loop LTC stim-
ulation with a random/open-loop stimulation control and are
consistent with previous studies showing memory enhancement
via LTC stimulation (Ezzyat et al. 2018; Kucewicz et al. 2018;
Kahana et al. 2023).

White matter proximity mediates stimulation’s
effect on memory
Motivated by physiological studies of electrical stimulation’s
effects on downstream targets (Keller et al. 2018; Solomon et al.
2018; Mohan et al. 2020), we asked whether stimulating close to
white matter tracts would produce greater positive or negative
effects on memory. If so, this would suggest that the brain’s
anatomical network structure plays a key role in determining
how effectively stimulation can modulate cognitive function
(Stiso et al. 2019; Crocker et al. 2021). To answer this question,
we examined how stimulation’s effect on memory performance
varied as a function of the stimulation target’s proximity to white
matter. For the Closed-loop group, lower distance to white matter
predicted greater stimulation-related memory improvement
(z = 3.51, P = 0.01; Fig. 3A). In the random stimulation group, we
neither expected nor observed a correlation between white matter
distance and the memory effect (P = 0.66). There was no difference
between the distances to white matter for the Closed-loop and
Random groups (P = 0.65) and the median distance was in fact
numerically greater for the Closed loop (1.58 mm) compared with
the Random group (1.39 mm). This suggests that distance to white
matter alone does not explain the finding of improved memory in
the Closed-loop group. Instead, proximity to white matter appears
to enhance the effectiveness of closed-loop stimulation.

To further test this idea, we divided stimulation targets into
terciles and asked whether stimulation near white matter was
particularly effective in modulating memory performance.

Indeed, Closed-loop stimulation targets near white matter
enhanced memory performance on Stim lists compared with
NoStim lists (Near: M = 28.3% ± 7.0%, z = 4.06, P = 5 × 10−5). This
memory improvement was larger than for Closed-loop stimula-
tion targets further away from white matter (Mid: M = 1.5% ± 7.4%,
z = 2.59, P = 0.01; Far: M = 0.6% ± 7.4%, z = 2.61, P = 0.009). Closed-
loop stimulation near white matter also significantly out-
performed the Random stimulation near white matter group
(Random M = −7.9% ± 13.3%, z = 2.31, P = 0.02, Fig. 3B). As expected,
the Random group did not show improved memory (Stim vs.
NoStim within-participant) in any white matter distance bin (all
P > 0.32). These data suggest that stimulating near white matter
leads to greater modulation of memory, and extend previous work
that linked white matter proximity to stimulation’s effect on
electrophysiology (Keller et al. 2018; Solomon et al. 2018; Stiso
et al. 2019; Mohan et al. 2020; Crocker et al. 2021).

Stimulation target functional connectivity
predicts the change in memory
We next asked why closed-loop stimulation delivered near white
matter reliably modulated memory function. One possibility is
that stimulating near white matter allows more reliable and
direct access to the broader memory network connected to the
stimulated location (Solomon et al. 2018; Khambhati et al. 2019;
Stiso et al. 2019; Mohan et al. 2020). We therefore measured
functional connectivity between the brain’s memory encoding

network and the stimulation targets located near white matter.
Critically, we constructed separate measurements of connectiv-
ity at low (5–13 Hz) and high frequencies (45–90 Hz) by cal-
culating coherence using participant-specific resting-state data
(see Materials and methods). Then, to isolate the brain’s memory
encoding network, we identified all electrodes that were in brain
regions that showed a spectral tilt that predicted memory suc-
cess during the task, assessed using classifier feature importance
Fig. 4A. We then compared stimulation target connectivity to elec-
trodes In vs. Out of the memory network, for both low- and high-
frequency coherence (referred to as Node Strength). Stimulation
targets showed stronger low-frequency connectivity to electrodes
in the memory network than to electrodes outside of the memory
network [z = 2.31, P = 0.02, Fig. 4B]. For memory network electrodes,
low-frequency connectivity was also higher than high-frequency
connectivity [z = 2.39, P = 0.02]. In contrast, stimulation targets
showed equivalent high-frequency connectivity In vs. Out of the
memory network [P = 0.49, Fig. 4B].

Although stimulation targets near white matter showed
greater overall low-frequency connectivity with memory-predic
ting brain areas, this finding leaves open the question of
whether variability in connectivity strength with the memory
network predicts variability stimulation’s effect on memory. To
answer this question, we correlated low-frequency node strength
with stimulation-related memory change. We found that low-
frequency node strength predicted closed-loop stimulation’s
effect on memory (β = 0.69 ± 0.16, P = 2 × 10−5, Fig. 4C), while high-
frequency node strength did not (P = 0.56). The difference in
correlation for low- vs. high-frequency node strength was also
significant (two-tailed permutation test P = 0.03). For all other
targets that were further from white matter, there was no relation
between node strength and stimulation-related memory change
(all P > 0.19).

Functional connectivity mediates stimulation’s
effect on downstream physiology
The preceding results indicate that low-frequency functional con-
nectivity to the memory network predicts stimulation effects on
memory. Our final question was whether low-frequency connec-
tivity also predicts stimulation’s physiological effects across the
memory network. To test this prediction, we again examined
Closed-loop stimulation targets near white matter and corre-
lated each stimulation target’s connectivity to the memory net-
work with the stimulation-evoked spectral power in this network
(Fig. 5A). Two participants’ data were excluded due to excessive
stimulation artifact on the recording channels. In the remaining
participants, we found that stimulation-target functional con-
nectivity predicted stimulation-related changes in low-frequency
power (β = −0.72 ± 0.23, P = 0.001, Fig. 5B). The correlation was not
significant when using high-frequency connectivity and evoked
power (P = 0.83, Fig. 5C).

Discussion
Direct electrical stimulation has emerged as a powerful tool for
manipulating neural activity. The present study evaluated the
hypothesis that network properties of a stimulated brain location
predict stimulation’s effects on both memory and network phys-
iology. Prior studies suggest that white matter pathways medi-
ate stimulation’s network-level physiological effects (Solomon
et al. 2018; Khambhati et al. 2019; Stiso et al. 2019; Mohan et al.
2020; Paulk et al. 2022). Other studies demonstrate that measures
of structural and functional connectivity predict stimulation’s
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Fig. 4. Stimulation target functional connectivity. A) We assigned each patient’s record-only electrodes to two ROIs based on whether the electrode was
located in a region that showed a memory-related spectral tilt or not (other). B) Low-frequency connectivity was higher between the stimulation target
and electrodes in classifier-defined memory regions, compared with electrodes in other regions (P = 0.02) and compared with high-frequency network
connectivity (P = 0.02). In contrast, there was no difference in stimulation target high-frequency network connectivity. C) For closed-loop targets nearest
to white matter, there was a significant correlation between stimulation target low-frequency connectivity and stimulation’s effect on memory [β = 0.69,
P = 2 × 10−5]. There was no effect for high-frequency connectivity. Error bars reflect s.e.m. Error regions reflect the standard error of the estimate.

Fig. 5. Memory network connectivity predicts physiology. A) Schematic of the analysis of stimulation-evoked physiology. B) For stimulation targets
near white matter, low-frequency functional connectivity predicted the stimulation-evoked change in low-frequency power (P = 0.02). C) High-frequency
network connectivity did not predict stimulation’s effect on high-frequency activity.

effects on downstream targets (Keller et al. 2011; Solomon et al.
2018; Fox et al. 2020). However, none have simultaneously linked
structural/functional connectivity with both (i) a reliable improve-
ment over baseline cognitive functioning and (ii) concomitant
changes in neurophysiology that explain the behavioral effect.

To directly address these questions, we asked whether white-
matter proximity and functional connectivity underlie the degree
to which stimulation of LTC produces improvements or impair-
ments of memory, alongside changes in oscillatory signatures of
mnemonic function.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/1/bhad427/7457341 by U

niversity of Pennsylvania Library user on 07 February 2024



Ezzyat et al. | 9

We found that closed-loop stimulation of LTC reliably improved
memory on stimulated vs. nonstimulated lists. Consistent with
the hypothesis that white-matter pathways convey the effects
of stimulation to the broader memory network, we found the
benefits of closed-loop LTC stimulation to arise principally from
stimulating in, or near, white matter pathways. For the electrodes
nearest to white matter, stimulation yielded a 28% increase in
recall performance, whereas we failed to observe any reliable
increase when delivering stimulation far from these pathways
(1%). In a subgroup of subjects who received randomly timed
stimulation in LTC targets, we failed to observe any improvement
in memory performance.

To evaluate how stimulation–target functional connec-
tivity mediates stimulation’s behavioral and physiological
effects, we analyzed participant-specific large-scale neural
recordings obtained during prior record-only sessions. Prior
studies have shown that brain networks become coherent
at low-frequencies during successful memory encoding and
retrieval (Solomon et al. 2017; Kragel, Ezzyat, et al. 2021), so
we used low-frequency coherence to measure the network
node strength of each stimulation target. We then asked if
greater node strength between LTC stimulation targets and
downstream memory-predicting areas resulted in greater effects
of stimulation on memory performance. Consistent with this
hypothesis, we found a strong positive correlation (β = 0.69,
Fig. 4C) between low-frequency connectivity and stimulation-
related memory improvement. Finally, LTC stimulation engaged
low-frequency activity across a broader brain network in a
way that matched the network position of the stimulated
location (Fig. 5).

Our data highlight how precise targeting improves stimulation
efficacy by showing that delivering stimulation near LTC white-
matter leads to greater stimulation-related memory gains
(Fig. 3C). By linking low-frequency network connectivity with
physiological and behavioral outcomes, our study also points
to a neural mechanism for modulating memory with stimulation.
This result extends earlier work that demonstrated the potential
to modulate episodic memory by targeting LTC with stimulation
(Ezzyat et al. 2018; Kucewicz et al. 2018). Directly comparing
closed-loop and open-loop stimulation strategies in the same
study helps to establish a causal role for the closed-loop approach
(Ezzyat and Rizzuto 2018; Hampson et al. 2018). Finally, our data
from 57 stimulation targets (across 47 patients) also represent
a substantial increase compared with sample sizes described in
related prior studies (Ezzyat et al. 2018; Hampson et al. 2018).

Prior work has linked successful memory function with
theta power and coherence (Klimesch et al. 1997; Guderian and
Düzel 2005; Osipova et al. 2006; Burke et al. 2013; Staudigl and
Hanslmayr 2013; Solomon et al. 2017; Griffiths et al. 2019; Herweg
et al. 2020; Ter Wal et al. 2021; Kragel, Schuele, et al. 2021).
Here, we investigated this physiological correlate of memory
function by testing how memory-modulating LTC stimulation
affects low-frequency physiology. We found that stimulation’s
effect on low-frequency activity depends on the low-frequency
functional connectivity of the stimulation target. This suggests
that identifying strong functional connections can produce
stronger modulation of low-frequency activity within the memory
network. Furthermore, we found that stimulation that modulated
low-frequency activity also modulated memory performance.

Several prior studies found potential therapeutic benefits of
closed-loop stimulation triggered by decoding of intracranial
brain recordings (Ezzyat et al. 2018; Hampson et al. 2018; Scangos,
Khambhati, et al. 2021; Kahana et al. 2023). However, with some

important exceptions (Hampson et al. 2018), this work has lacked
an open-loop or random stimulation control condition, leaving
open the question of what specific role the closed-loop nature of
stimulation played in its therapeutic effects. Here, we compared
the effects of closed-loop stimulation with a random stimulation
condition. Closed-loop participants received stimulation only for
those items predicted to be forgotten. Participants in the Random
group followed the same protocol, but using classifiers trained
on permuted data, resulting in stimulation being applied without
regard to predicted memory success. This led to reliable memory
improvement for the Closed-loop group and none for the Random
group, despite following an otherwise identical protocol (Fig. 2C).

We found that closed-loop stimulation improved memory the
most when it was delivered to LTC targets in or near white
matter. This finding builds on a growing literature that indicates
that stimulation is most effective when it is delivered in or near
white matter pathways (Solomon et al. 2018; Khambhati et al.
2019; Stiso et al. 2019;Mohan et al. 2020 ; Paulk et al. 2022). One
explanation for this phenomenon is that only stimulation of white
matter pathways successfully engages broader brain networks,
perhaps via oscillatory synchronization. In contrast, gray matter
stimulation tends to cause more local effects (Mohan et al. 2020;
Paulk et al. 2022). Though purely local effects may sometimes
be desirable, the key cognitive and pathophysiological processes
of greatest interest to neuroscientists tend to involve multiple
interconnected brain regions.

Among its many applications for modulating cognition and
behavior (Sreekumar et al. 2017; Fox et al. 2020; Siddiqi et al.
2022), a number of recent studies have evaluated stimulation’s
potential for enhancing episodic memory (Lee et al. 2013; Sankar
et al. 2014; Suthana and Fried 2014; Curot et al. 2017; Mankin and
Fried 2020). While our study investigated numerous stimulation
targets within the LTC, future work should compare stimulation
of this region to other brain areas within the broader episodic
memory network. Recent work suggests that stimulating white
matter pathways in the medial temporal lobe, for example, can
also improve memory (Suthana et al. 2012; Titiz et al. 2017;
Mankin et al. 2021). However, these previous studies used visual
and/or spatial memoranda, while the present study focused on
encoding and retrieval of verbal material. Thus, future research
should compare stimulation to the lateral and medial temporal
lobes, to determine whether stimulation target location interacts
with the modality of the to-be-remembered information. This
could contribute to other work that has used stimulation to study
the component processes that contribute to successful episodic
memory (El et al. 2019).

We delivered stimulation using macroelectrodes, consistent
with its clinical applications (Sun et al. 2008; Morrell 2011; Krauss
et al. 2021). Macroelectrode stimulation alters local activity
at the spatial scale of the distance between the anode and
cathode (approximately 1 cm) but can also alter more distant
regions. Because memory relies on a broad network of cortical
and subcortical regions, including the hippocampus (Kim 2011;
Keerativittayayut et al. 2018), stimulating a broader network may
be necessary to impact cognitive function. On the other hand,
memory also relies on the recapitulation of specific patterns of
neuronal activity, especially within the hippocampus (Foster 2017;
Staresina and Wimber 2019). Thus, other work has stimulated
through microelectrodes to mimic and reinstate memory-related
hippocampal activity using a model-based closed-loop approach
(Hampson et al. 2013, Deadwyler et al. 2017, Hampson et al.
2018). An avenue for future work could use macroelectrode
stimulation in a similar vein, by triggering stimulation at multiple
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macroelectrode contacts in order to synchronize a particular
spatiotemporal pattern of activity across key memory-related
regions (Kim et al. 2016, 2018).

In relating low-frequency network connectivity, physiology, and
behavior, our study contributes to the methodological develop-
ment for invasive stimulation (Cagnan et al. 2019; Krauss et al.
2021) that illuminates the critical role of low-frequency networks
in cognition (Voytek and Knight 2015). In addition, the present
study also suggests that other methods that manipulate low-
frequency activity could be leveraged to modulate neural and cog-
nitive function. Several recent studies using noninvasive meth-
ods have leveraged low-frequency theta-patterned stimulation to
modulate episodic and working memory (Nilakantan et al. 2017;
Tambini et al. 2018; Warren et al. 2019; Hermiller et al. 2020;
Grover et al. 2022). Such low-frequency stimulation modulates
electrophysiology perhaps by entraining low-frequency oscilla-
tions that are associated with cognitive function (Reinhart et al.
2017; Hanslmayr et al. 2019; Reinhart and Nguyen 2019; Solomon
et al. 2021).

There are some limitations to the current work that emerge
from trade-offs associated with our approach. We attempted to
construct the largest existing dataset examining invasive closed-
loop stimulation for memory modulation. In so doing, although
most participants were stimulated at a single frequency (200 Hz),
we included in our analysis participants who underwent stim-
ulation at other stimulation frequencies. A critical question for
future research will be to directly compare stimulation at different
frequencies within-participant (Mohan et al. 2020). In addition, we
carried out our comparisons of (i) closed-loop vs. random stim-
ulation and (ii) white matter distance as between-participants
tests. Future work should therefore address the effectiveness
of closed-loop stimulation and white matter targeting within-
participant, by focusing resources on collecting data within-
participant. In the case of invasive stimulation, however, this
approach presents its own challenges in terms of patients’ clinical
priorities.

In summary, our demonstration of improved memory with
closed-loop stimulation supports the idea that memory function
is dynamic, and that closed-loop algorithms that account for
moment-to-moment variability in the brain’s memory state can
selectively deliver stimulation only when it is needed. The present
study also links closed-loop stimulation efficacy to white matter
targeting, brain-wide evoked physiology, and changes in episodic
memory performance. The findings suggest future strategies for
using the functional and anatomical network profile of putative
stimulation targets to optimize downstream changes in oscilla-
tory activity and cognition.
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