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Attempts to understand why memory predicts intelligence have not fully leveraged state-of-the-art
measures of recall dynamics. Using data from a multisession free recall study, we examine individual
differences in measures of recall initiation and postinitiation transitions. We identify 4 sources of
variation: a recency factor reflecting variation in the tendency to initiate recall from an item near the end
of the list, a primacy factor reflecting a tendency to initiate from the beginning of the list, a temporal
factor corresponding to transitions mediated by temporal associations, and a semantic factor correspond-
ing to semantically mediated transitions. Together, these 4 factors account for 83% of the variability in
overall recall accuracy, suggesting they provide a nearly complete picture of recall dynamics. We also
show that these sources of variability account for over 80% of the variance shared between memory and
intelligence. The temporal association factor was the most influential in predicting both recall accuracy
and intelligence. We outline a theory of how controlled drift of temporal context may be critical across
a range of cognitive activities.
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Complex behavior such as having a conversation, reading a
paper, or making a decision relies on the coordinated operation of
many cognitive processes. For over 100 years, psychologists have
attempted to understand how such coordination is achieved. One of
the earliest findings was that performance on simple memory span
tasks predicts success on more complex tasks (Jacobs, 1887).
Dozens of studies have since confirmed that span performance
correlates with a wide range of cognitive abilities (for meta-
analyses, see Ackerman, Beier, & Boyle, 2005; Daneman & Mer-
ikle, 1996). In trying to understand the connection between mem-
ory and complex cognition, the literature has come to focus on
general intelligence, as it constitutes a theory-neutral statistical
factor that contributes to almost all cognitive tasks (i.e., the pos-
itive manifold; Carroll, 1993). The question of which memory
processes are critical in predicting intelligence has animated the
individual differences literature for over 30 years (Daneman &
Carpenter, 1980; Mogle, Lovett, Stawski, & Sliwinski, 2008;
Turner & Engle, 1989; Unsworth, Brewer, & Spillers, 2009).

Most of this work has focused on limitations in working mem-
ory and attention (e.g., Hasher, Lustig, & Zacks, 2007; Kane,

Conway, Hambrick, & Engle, 2007; Oberauer, 2002; Towse,
Hitch, & Hutton, 1998). The focus on working memory likely has
roots in the fact that span tasks were developed to measure the
ability to hold information in an active state in primary memory
rather than to measure the ability to retrieve information from
secondary memory (Jacobs, 1887). As the idea of a passive pri-
mary memory matured into the notion of a working memory
system that both stores and manipulates information (Baddeley,
2003; Miyake & Shah, 1999), new complex span tasks were
designed that required simultaneously storing and processing in-
formation (Daneman & Carpenter, 1980; Turner & Engle, 1989).
These complex span tasks have proven to be even better predictors
of intelligence than simple span tasks, further solidifying the
central role of working memory in the search for the link between
memory and intelligence. Despite extensive investigation, a con-
sensus on which processes are critical has failed to emerge (for a
variety of competing perspectives, see Conway, Jarrold, Kane,
Miyake, & Towse, 2007).

Recent evidence suggests that part of the difficulty is that in
addition to working memory, episodic memory also contributes to
the correlation between span and intelligence. Healey and Miyake
(2009) found that span tasks require considerable attentional re-
sources during retrieval, which is inconsistent with the view that
items are held in working memory and easily accessible. Mogle et
al. (2008) and Unsworth, Brewer, and Spillers (2009) have shown
that after accounting for variation in episodic tasks such as free
recall, paired associate learning, and prose recall, the correlation
between span and intelligence is either eliminated or considerably
reduced. Discovering which episodic memory processes are re-
lated to intelligence is now a priority for individual differences
research (Ratcliff, Thapar, & McKoon, 2011; Unsworth, Brewer,
& Spillers, 2013).

Prior to the current focus on working memory, some early
individual difference work examined episodic memory tasks (e.g.,
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Carlson, 1937; Christal, 1958; Games, 1962; Kelley, 1964; Un-
derwood, Boruch, & Malmi, 1978). This work attempted to un-
derstand the relationships among both span and classic episodic
memory tasks (e.g., free recall, paired associates, recognition) by
deriving an overall summary measure for each task, such as overall
recall accuracy, and examining the correlations among the sum-
mary measures. The main conclusion was that although there were
identifiable subgroups of memory tasks (e.g., span tasks vs. asso-
ciative tasks), the tasks also loaded onto a common factor (for
reviews, see Beier & Ackerman, 2004; Kane & Miyake, 2008).
Although this older literature clearly established that episodic
memory tasks share common variance, perhaps due to the focus on
summary measures, it has not shed much light on which memory
processes underlie the correlation with intelligence.

Proceeding largely in parallel to the individual difference liter-
ature (Carroll, 1993; Cronbach, 1957; Kane & Miyake, 2008;
Underwood, 1975), the experimental study of episodic memory
has focused not on correlating summary measures across tasks but
on developing a detailed understanding of the cognitive processes
at work within particular tasks. This work has provided a set of
sophisticated measures of recall dynamics, which have only re-
cently begun to inform the individual difference literature (e.g.,
Healey & Kahana, 2013; Sederberg, Miller, Howard, & Kahana,
2010; Unsworth, 2009). Here, we examine individual differences
in recall dynamics in an effort to illuminate the correlation be-
tween memory and intelligence. We begin by reviewing the dy-
namics of memory search.

The Dynamics of Memory Search

The dynamics of memory search can be decomposed into recall
initiation and postinitiation transitions. Probability of first recall
(PFR) curves (see Figure 1A) measure initiation by showing the
probability of initiating from each serial position (Hogan, 1975;
Howard & Kahana, 1999; Laming, 1999). In immediate free recall
of supra-span lists (Grenfell-Essam & Ward, 2012), participants
tend to initiate from the last serial position (Deese & Kaufman,
1957).

Postinitiation dynamics are revealed by the order in which items
are recalled. Both long-standing semantic associations and newly
formed episodic (temporal) associations exert a powerful influence
on recall order. The influence of temporal associations can be
described by how the probability that recall of item i is followed by
recall of item j changes as a function of the distance, or lag,
between i and j in the original list. For example, if i � 5 and j �
6, we would have a lag, j � i, of �1. Plotting these probabilities
for a range of lags gives a lag-CRP (conditional response proba-
bility) function. Lag-CRPs are computed by dividing the number
of times a transition of a given lag was actually made by the
number of times it could have been made (Kahana, 1996). Lag-
CRPs (see Figure 1B) show a strong temporal contiguity effect.

We can examine the influence of long-standing semantic asso-
ciations on transition probabilities (Bousfield, 1953; Romney,
Brewer, & Batchelder, 1993) using latent semantic analysis (LSA;
Landauer & Dumais, 1997), which measures the proximity of
words in a multidimensional model of semantic space. Using LSA
values to create a semantic-CRP curve (see Figure 1C) reveals a
strong semantic contiguity effect (Howard & Kahana, 2002). To-
gether, the three curves (see Figure 1), which we call the recall
dynamics functions, provide a summary of the dynamics of mem-
ory search.

We have recently shown that these three recall dynamics func-
tions exhibit a remarkable level of qualitative consistency across
individuals (Healey & Kahana, 2013). The functions do, however,
show individual differences. Examining the PFR curves of indi-
vidual participants revealed that whereas most participants tend to
initiate recall with the very last item of the list, there are two
additional subgroups that show different initiation patterns. In
contrast to the beginning-first pattern, one subgroup of participants
tended to initiate from the beginning of the list. The final subgroup
of participants tended to initiate from a few items back from the
end. We argued that this recall pattern results from participants
encoding trains of several successive items into a chunk (Farrell,
2012). Postinitiation dynamics also show variation, but it is quan-
titative variation in the level of the functions, not their shape. Here,
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Figure 1. The recall dynamics functions. Data are from the 141 participants who completed Experiment 1 of
the Penn Electrophysiology of Encoding and Retrieval Study. Participants studied multiple 16-item lists for
immediate free recall (see the Method section for details). A: Probability of first recall curve. B: Lag-conditional
response probability curve. C: Semantic-conditional response probability curve. See the text for details on how
these curves are computed. Error bars are 95% within-subject confidence intervals (Loftus & Masson, 1994).
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we provide a more detailed examination of these individual dif-
ferences and their relation to intelligence.

Individual Differences in Memory Search

The fundamental goals of studying individual differences in
memory and intelligence are to identify which processes show
variation across individuals and which of those processes are
correlated with IQ. A common approach in the individual differ-
ences literature has been to identify a cognitive process that may
be critical in both memory and intelligence tasks. For each con-
struct of interest (i.e., memory ability, intelligence, and the puta-
tive mediating process), researchers administer several tasks de-
signed to measure that construct. Summary measures are derived
from each task (e.g., overall recall) and used to extract latent
variables, which are taken as indices of the underlying constructs.
An assumption here is that although the putative mediating process
contributes to all three types of tasks, the latent variable extracted
from the third set of tasks provides a purer measure of that process.
Researchers can then test if statistically controlling for variation on
that new, purer measure eliminates (i.e., mediates) the correlation
between memory performance and IQ. This logic has been applied
to testing the idea that episodic memory processes explain the
correlation between memory tasks and IQ. For example, Mogle et
al. (2008) showed that the correlation between span tasks and fluid
intelligence was no longer significant when variation in episodic
memory tasks, including free recall, was controlled for. Unfortu-
nately, this approach has failed to provide consistent results. For
example, Unsworth et al. (2009) have shown evidence for partial
but not complete mediation.

One reason for this difficulty may be that the mediation ap-
proach attempts to infer the internal factor structure of memory
from the pattern of correlations among summary measures derived
from a variety of different memory and nonmemory tasks. As
such, the approach is highly theory driven in that the researcher
must have some prior hypothesis about which processes are critical
and use this to decide which tasks to administer. The need for prior
theories is, in part, due to the reliance on summary measures.
Summary measures reflect the final outcome of all the contributing
cognitive processes. In other words, they take the output of mul-
tiple processes and compress them into a single number. This
compression makes it difficult to directly determine how many
processes contributed to the summary measure, forcing the re-
searcher to deduce the underlying processes from correlations
among different tasks.

The recall dynamics functions, however, allow us to take a more
data-driven approach to studying individual differences. Instead of
inferring the internal factor structure of memory from correlations
across different tasks, we can examine detailed measures of per-
formance derived from a single task. Essentially, the recall dy-
namics functions uncompress the summary measure of overall
recall, providing a window on the cognitive processes that produce
overall performance.

Some important facts about individual differences in recall
dynamics have already been discovered: Temporal and semantic
contiguity seem to be universal principles across individuals (Hea-
ley & Kahana, 2013), temporal contiguity is positively correlated
with overall recall (Sederberg, Miller, Howard, & Kahana 2010;
Spillers & Unsworth, 2011), and individuals who exhibit both

strong primacy and strong recency effects tend to have higher fluid
intelligence scores than individuals who exhibit either weak pri-
macy or recency (Unsworth, Brewer, & Spillers, 2011). Although
important first steps, these studies have not fully embraced the idea
of moving beyond summary measures to examine the full richness
of the recall dynamics functions and have instead used summary
measures such as temporal contiguity scores and latency to first
recall (e.g., Sederberg et al., 2010; Unsworth, 2009).

An advantage of summary measures is that they provide a single
variable on which to compare individuals. By contrast, the recall
dynamics functions of Figure 1 include 36 separate variables (16
points in the PFR and 10 points each in the lag-CRP and semantic-
CRP). Directly examining individual differences on these 36 di-
mensions would be intractable. Instead, we use factor analysis as
a tool to reduce the recall dynamics functions to a manageable
number of dimensions while retaining the richness of the data. This
approach allows us to address three questions.

First, how many sources of variance underlie individual differences
in the recall dynamics functions, and what do these sources mean in
terms of cognitive processes? Answering this question will place
constraints on models of memory search (Underwood, 1975). Intui-
tively, one may predict that separate sources of variance contribute to
each of the recall dynamics functions (i.e., an initiation factor, a
temporal contiguity factor, and a semantic contiguity factor). Under
most models of memory, however, each of the functions results from
multiple interacting mechanisms, making it unclear how many factors
a model predicts. For example, under retrieved context models (e.g.,
Polyn, Norman, & Kahana, 2009), one parameter governs the influ-
ence of new temporal associations, another governs existing semantic
associations, and both are scaled by a third parameter. In principle,
individuals could differ on any or all of these parameters; thus, the
model could predict that as few as one and as many as three sources
of variance underlie the temporal and semantic recall dynamics func-
tions. The predictions of other models are similarly ambiguous (see
the Discussion for more on this issue).

Second, do the recall dynamics functions provide a complete
description of the processes governing memory search? If so, they
should contain all of the information needed to reconstruct an
individual’s overall probability of recall, which represents the
outcome of all memory search processes. Answering this question
will help identify gaps in our understanding of recall dynamics; if
a substantial proportion of the variance in overall recall is unex-
plained, it suggests that the recall dynamics functions miss impor-
tant memory processes.

Finally, which memory processes are related to intelligence?
Knowing which aspects of the recall dynamics functions correlate
with intelligence will allow modelers to test whether the correspond-
ing parameter in a model is also correlated with intelligence. For the
individual differences literature, knowing how the internal factor
structure of recall dynamics relates to intelligence will advance the
goal of understanding why memory predicts intelligence.

Method

Participants

The data reported here are from the Penn Electrophysiology of
Encoding and Retrieval Study (PEERS). PEERS aims to assemble
a large database on the electrophysiological correlates of memory
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encoding and retrieval. The present analyses are based on the 141
college students (age 17–30 years) who had completed Experiment
1 of PEERS as of September 2013. Participants were recruited
through a two-stage process. First, we recruited right-handed na-
tive English speakers for a single session to introduce partici-
pants to electroencephalographic (EEG) recordings and the free
recall task (EEG data are not reported here). Participants who
completed this introductory session were invited to enroll in the
full study, on the condition that they did not make an excess of eye
movements during item presentation epochs of the experiment and
that their probability of recall was less than 0.8. Approximately
half of the participants recruited for the preliminary session qual-
ified for, and agreed to participate in, the multisession study.
Participants were consented according to the University of Penn-
sylvania’s Institutional Review Board protocol and were compen-
sated for their participation.

PEERS Experiment 1

For completeness, we provide a full description of PEERS
Experiment 1, but note that our primary analysis was conducted on
the immediate free recall data. Participants performed a free recall
experiment consisting of one practice session and six subsequent
experimental sessions (the practice session is not included in the
analyses reported below, though we note that including it produces
almost identical results and does not change any conclusions).
Each session consisted of 16 lists of 16 words presented one at a
time on a computer screen. Each study list was followed by an
immediate free recall test, and each session ended with a recog-
nition test. The practice session and half of the experimental
sessions were randomly chosen to include a final free recall test
before recognition, in which participants recalled words from any
of the lists from the session.

Words were presented either concurrently with a task cue,
indicating the judgment that the participant should make for that
word, or with no encoding task. The two encoding tasks were a
size judgment (“Will this item fit into a shoebox?”) and an ani-
macy judgment (“Does this word refer to something living or not
living?”), and the current task was indicated by the color and
typeface of the presented item. Using the results of a prior norming
study, only words that were clear in meaning and that could be
reliably judged in the size and animacy encoding tasks were
included in the pool. There were three conditions: no-task lists
(participants did not have to perform judgments with the presented
items), single-task lists (all items were presented with the same
task), and task-shift lists (items were presented with either task).
The first two lists were task-shift lists, and each list started with a
different task. The next 14 lists contained four no-task lists, six
single-task lists (three of each of the task), and four task-shift lists.
List and task order were counterbalanced across sessions and
participants.

Each word was drawn from a pool of 1,638 words. Lists were
constructed such that varying degrees of semantic relatedness
occurred at both adjacent and distant serial positions. Semantic
relatedness was determined using the word association space
(WAS) model described by Steyvers, Shiffrin, and Nelson (2004).
WAS similarity values were used to group words into four simi-
larity bins (high similarity: cos� between words � 0.7; medium-
high similarity: 0.4 � cos� � 0.7; medium-low similarity: 0.14 �

cos� � 0.4; low similarity: cos� � 0.14). Two pairs of items from
each of the four groups were arranged such that one pair occurred
at adjacent serial positions and the other pair was separated by at
least two other items.

For each list, there was a 1,500-ms delay before the first word
appeared on the screen. Each item was on the screen for 3,000 ms,
followed by a jittered (i.e., variable) interstimulus interval of
800–1,200 ms (uniform distribution). If the word was associated
with a task, participants indicated their response via a keypress.
After the last item in the list, there was a jittered delay of 1,200–
1,400 ms, after which a tone sounded, a row of asterisks appeared,
and the participant was given 75 s to attempt to recall aloud any of
the just-presented items.

If a session was selected for final free recall, following the
immediate free recall test from the last list, participants were
shown an instruction screen for final free recall, telling them to
recall all the items from the preceding lists. After a 5-s delay, a
tone sounded, and a row of asterisks appeared. Participants had 5
minutes to recall any item from the preceding lists.

After either final free recall or the last list’s immediate recall test
was a recognition test, which is not considered here (for full
details, see Lohnas & Kahana, 2013).

PEERS Experiment 2

PEERS Experiment 2 was used to test the generalizability of our
factor analysis. Of the 141 participants included in our main
analyses, 127 also completed Experiment 2, which differed from
Experiment 1 as described below. There was one practice session
(not analyzed), followed by six experimental sessions each con-
sisting of 12 study lists of 16 words. Experiment 2 included a mix
of immediate recall lists, delayed recall lists (in which the final
word was followed by a distractor task), and continual distractor
lists (in which each word was followed by a distractor task).
Distractor tasks consisted of answering math problems A � B �
C � ?, where A, B, and C were positive, single-digit integers,
though the answer could have been one or two digits. When a math
problem was presented on the screen, the participant typed the sum
as quickly as possible. The task was self-paced, such that a
participant may have been presented with, but not responded to, a
problem at the end of the distraction interval. Participants were
given a monetary bonus based on the speed and accuracy of their
responses. In the first two trials, participants performed free recall
with one trial having a distractor period following the last word
presentation for 8 s. For the other of the first two trials,
participants performed the distractor task for 8 s prior to and
following each word presentation. In the remaining 10 trials,
participants performed free recall with five possible time dura-
tions for the between-item and end-of-list distractor tasks. As
listed here, the first number indicates the between-list distractor
duration, and the second number indicates the end-of-list dis-
tractor duration, both in seconds: 0-0 for immediate recall, 0 – 8
or 0 –16 for delayed recall, and 8-8 or 16-16 for continual
distractor recall. A 0-s distractor refers to the typical, nonfilled
duration intervals as described for Experiment 1. Within each
session, 50% of the lists were randomly chosen to be task-
switch lists, and the other half were single-task lists.
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Intelligence Testing

The Wechsler Adult Intelligence Scale (WAIS) IV (Wechsler,
2008) was administered to 101 of the participants who completed
Experiment 1. WAIS testing was conducted by a trained clinical
psychologist in one-on-one sessions after completing all free recall
sessions. We omitted the working memory index of the WAIS as
we were concerned that participants’ extensive practice with free
recall would artificially inflate their scores.

Results

Identifying Sources of Variance in Recall Dynamics

The recall dynamics functions are composed of 36 variables (16
points in the PFR and 10 points each in the lag-CRP and semantic-
CRP). We want to know how many cognitive processes contribute
to individual differences on these 36 variables. If we call the true
number of underlying processes m, then we should be able to
represent most of the variability in the dynamics functions by
using a factor analysis to extract m statistical factors from the data.
Extracting fewer than m factors will fail to capture all of the
variability in the data set, whereas extracting more than m factors
will overestimate the number of contributing processes. The ques-
tion then becomes, what is the value of m?

To find the appropriate value of m, we use a Monte Carlo
method (Glorfeld, 1995; Horn, 1965) that starts with the intuition
that a data set with m underlying sources of variance (i.e., factors)
will look different than a data set with uncorrelated variables.
Given a particular data set, we can start by extracting a single
factor and seeing how much of the variance in the data is ac-
counted for by that factor. As we increase the number of factors
extracted, the total amount of variance accounted for will tend to
increase. If the data contain no true factors, then each factor should
account for only a small proportion of the variance (i.e., each
factor should have a small eigenvalue). By contrast, if the data
actually have m factors, then the first m factors should account for
a considerable proportion of the variance (i.e., should have large
eigenvalues), and factors � m should account for less variance. In
other words, the first m eigenvalues of a data set with m factors
should be higher than the corresponding eigenvalues for uncorre-
lated data sets. Thus, to find the value of m, we need to determine
what the eigenvalues would be if there were no true factors and
then compare these with the eigenvalues obtained from the partic-
ipants’ data.

We determined the expected eigenvalues for uncorrelated
data by running a factor analysis on a simulated data set that has
the same means and variance as the actual data but in which the
variables are uncorrelated. Taking the PFR as an example, the
value of a person’s PFR at Serial Position 1 will likely be corre-
lated with the value of his or her PFR at Serial Position 2. To create
a simulated PFR that has the same shape as the original but lacks
its correlation structure, we started with Serial Position 1 and drew
values (one for each actual participant) from a random distribution
with a mean and variance equal to the mean and variance of the
actual PFR at Serial Position 1. We did the same for Serial Position
2, and so on. Because each serial position is drawn from an
independent random distribution, there will be no correlation be-
tween serial positions. We created simulated lag-CRPs and simu-

lated semantic-CRPs in the same way, providing us with a full set
of simulated recall dynamics functions.

We then ran a factor analysis on the simulated data set and saved
the eigenvalues. We repeated this procedure for 1,000 simulated
data sets to build a distribution of expected eigenvalues for uncor-
related data. We then compared eigenvalues computed from the
actual data with this distribution: If the data have m factors, the
eigenvalues for the first m factors should lie above the 97.5th
percentile of the simulated distribution but those for factors greater
than m should not. Figure 2 indicates that four factors underlie the
recall dynamics functions.1

Linking Factors to Memory Processes

Once we have identified the correct number of factors, extract-
ing those factors from the data provides two key sets of numbers
that can help to link the factors to cognitive processes. The first is
a set of factor loadings that describe how much each factor
contributes to variation on each of the 36 original variables (e.g.,
a process that controls recall initiation would likely have strong
loadings for the PFR but weaker loadings for the lag-CRP and the
semantic-CRP). The second is a set of factor scores, one for each
factor, that shows where in the distribution of variation on that
factor each individual lies and can be used to compare subgroups
of participants (e.g., those that show different patterns of recall
initiation).

The initial set of loadings returned by the factor analysis algo-
rithm requires the factors to be orthogonal. However this initial
solution can be rotated to make it more theoretically meaningful
(Kline, 2005). Because there is no strong theoretical reason to
believe that memory processes should be uncorrelated, we applied
an oblique rotation (the Promax rotation), which allows factors to
correlate. To ensure that the factor loadings are not biased by
outliers and to provide confidence intervals on the loadings, we ran
a jackknife procedure in which we ran the factor analysis multiple
times, each time leaving one participant out of the sample (Clark-
son, 1979). We used the distribution of loadings across samples to
create 99% confidence intervals around the mean loadings. These
mean loadings were then used to calculate factor scores using the
Bartlett (1937) method. Next, we examined the factor loadings and
scores to link the factors to memory processes.

Each point in the recall dynamics functions has one loading for
each of the factors, and the square of these loadings tells us how
much of the variance in that variable is explained by the factor
(analogous to the R2 in a regression). Figure 3 shows squared
loadings mapped onto the original variables, and Table 1 shows the
nonsquared loadings.

The PFR loads primarily on Factors 2 and 3, suggesting two
major sources of individual differences in recall initiation. As
discussed above, we have recently identified subgroups of partic-
ipants that exhibit distinct patterns of recall initiation (Healey &
Kahana, 2013). To provide a clearer interpretation of the two recall
initiation factors, we divided participants into these subgroups
using the same k-means clustering procedure we employed in that

1 All of the factor analyses reported in this article were conducted in
MATLAB Release 2013a using the factoran function of the Statistics
Toolbox. All path analyses reported here were conducted in R Version
3.0.1 using the lavaan package (Rosseel, 2012).
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earlier work. Figure 4 shows the average PFR curves for each
subgroup: the strong recency subgroup shows a strong tendency to
initiate recall from the final item, the moderate recency subgroup
shows a more moderate tendency to initiate from the final item, the
primacy subgroup shows a strong tendency to initiate from the
very first item, and the final subgroup shows a tendency to initiate
three to four items back from the end of the list. We argue that this
subgroup encodes the last few items as a chunk (Farrell, 2012) and
thus label it the chunking subgroup.

We focus first on interpreting Factor 2. Table 2 shows the
average factor scores for each of the recall initiation subgroups.
Looking at the Factor 2 row of the table, we see that the chunking

subgroup has the highest factor scores, the recency subgroups have
the lowest scores, and the primacy subgroup has scores near zero.
This pattern suggests that Factor 2 captures a tradeoff between the
recency and chunking patterns (participants with high scores on
this factor tend to initiate recall several items back from the end of
the list, whereas those with low scores tend to initiate from the
very last item). This interpretation is bolstered by examining how
the loadings for Factor 2 vary across serial positions (see Figure
3A). The loadings are lowest for early serial positions and largest
for late serial positions (those greater than 9), suggesting that the
factor describes a tendency to initiate from the recency portion of
the list. Note, however, that it is Serial Position 14 and not the very
last serial position (Serial Position 16) that loads most strongly on
Factor 2. Moreover, the nonsquared loadings in Table 1 indicate
that whereas Serial Positions 9–15 have strong positive loadings
on Factor 2, Serial Position 16 actually has a strong negative
loading. In other words, a large positive score on Factor 2 predicts
a high probability of initiating from somewhere near, but not at,
the end of the list, whereas a large negative score on Factor 2
predicts initiating from the very end of the list. Together, the
differences in factor scores across initiation subgroups and the
differences in factor loadings across serial positions indicate that
Factor 2 captures two patterns of initiating from recency items. We
therefore label this factor the recency factor.

Focusing on Factor 3, we see that factor scores are highest for
the primacy subgroup and lowest for the strong recency subgroup
(see Table 2) and intermediate for the moderate recency and
chunking groups (participants in these groups very occasionally
initiate from the beginning of the list; see Figure 4). This pattern
of scores across subgroups suggests that Factor 3 captures the
tendency to initiate recall from primacy items. Supporting this
interpretation, early serial positions (positions less than 9) loaded
most strongly onto Factor 3 (see Figure 3A and Table 1). We
therefore label Factor 3 the primacy factor.

The finding that there are distinct primacy and recency factors is
consistent with models that assume primacy and recency derive
from separate mechanisms. For example, retrieved context models
(e.g., Lohnas, Polyn, & Kahana, 2014; Polyn et al., 2009) assume
primacy is due to increased attention to early list items, whereas
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Figure 2. Results of Monte Carlo factor identification procedure (Glor-
feld, 1995; Horn, 1965). The shaded region represents the middle 95% of
the distribution of eigenvalues from 1,000 simulated data sets that con-
tained no factor structure. The line represents eigenvalues for the actual
data. Only Factors 1–4 in the actual data fall above the shaded region,
indicating that they explain more variability than expected by chance and
that the data contain four significant sources of variance.
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Figure 3. Squared loadings mapped onto the recall dynamics functions. A: Probability of first recall curve. B:
Lag-conditional response probability curve. C: Semantic-conditional response probability curve. The values at
each point indicate the proportion of variance across participants that is accounted for by each factor. Error bars
represent 99% confidence intervals (see text for details on how confidence intervals were computed). N � 141.
T � temporal; R � recency; P � primacy; S � semantic.
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recency is due to mental context states at retrieval providing strong
cues for recently presented items. We return to this point in the
Discussion.

Postinitiation dynamics, as described by lag-CRP and semantic-
CRP, load primarily on Factors 1 and 4 (see Figures 4B and 4C).
Factor 1 is strongly related to near temporal transitions and far
semantic transitions. By contrast, Factor 4 loads most strongly on
near semantic transitions and distant temporal transitions. There-
fore, we label Factor 1 and Factor 4 as the temporal and the
semantic process factors, respectively. The fact that the temporal
factor has high loadings not just for near temporal transitions but
also for far semantic transitions (and that the semantic factor has
high loadings not just for near semantic transitions but also for
distant temporal transitions) likely reflects a natural tradeoff be-

tween temporal and semantic clustering. Take the extreme exam-
ple of a participant who shows perfect temporal clustering (i.e.,
recalls in perfect serial order) and makes no use of semantic
associations. Because our lists are arranged so that most words
with strong semantic associations are not temporally contiguous,
such a participant would tend to make few transitions between
close semantic associates, which necessarily means they will show
stronger contiguity for items with low semantic similarity than for
items with strong semantic similarity.2

We can use each participant’s factor scores as measures of the
participant’s primacy, recency, temporal, and semantic processes.
Before we use the scores as individual differences measures,
however, we must ensure they are reliable. To assess reliability, we
used the split-half technique. Specifically, we used the factor
loadings from the full data set to compute a set of factor scores for
half of the six sessions and another set of factor scores for the other
half of the six sessions and correlated the two sets of scores. We
repeated this procedure for 100 split-half samples to compute
average split-half reliability. These reliabilities for the primacy,
recency, temporal, and semantic factors (� a 95% confidence
interval computed across the samples) were .86 � .005, .88 �
.005, .82 � .007, and .68 � .006, respectively. The reliability of
overall recall, computed using the same procedure, was .90 �
.005. These values are well above the common threshold of .6 for
acceptable reliability. To determine how the four factors relate to
each other, we correlated participants’ scores across the factors
(see Figure 5). Despite our use of an oblique factor rotation, the
factor scores remain largely uncorrelated. The lack of a correlation
between temporal and semantic factors (see also Sederberg et al.,
2010) suggests that temporal clustering and semantic clustering
arise from two distinct cognitive processes.

Using Recall Dynamics to Predict Overall Accuracy

Overall accuracy reflects the outcome of all the processes that
contribute to memory search. If the recall dynamics functions
provide a complete description of recall dynamics, we should be
able to use the factors derived above to predict overall recall.
Because none of these recall dynamics functions reflect recall
success directly, there is no a priori reason for the factors to
correlate with recall success (Sederberg et al., 2010).

As shown in Figure 5, the temporal and semantic factors are
both predictive of overall recall success, but the initiation factors
are not. In a meta-analysis, Sederberg et al. (2010) found that for
random word lists, a temporal clustering summary score was
moderately correlated with recall success but that a semantic
clustering summary score was not. By contrast, the lists used in the
current study included pairs of semantically related words, and we
found that both temporal and semantic clustering predicted recall
success. This pattern of results suggests that the relationship be-
tween clustering and recall success depends on the content of the
lists. As we elaborate in the Discussion, participants may dynam-

2 Table 2 suggests that the recall initiation subgroups do not show much
difference on the temporal and semantic factors. Ignoring the primacy
subgroup, there are no significant differences among the recency and
chunking subgroups. The primacy subgroup does show some trends, but
we suggest these differences be interpreted with caution given the small
number of participants in that subgroup.

Table 1
Promax Rotated Factor Loadings

Variable Factor 1 (T) Factor 2 (R) Factor 3 (P) Factor 4 (S)

PFR
Serial position

1 0.40 �0.16 0.75 �0.18
2 0.07 �0.09 0.63 0.08
3 �0.01 0.02 0.65 0.11
4 0.05 �0.15 0.73 0.10
5 0.03 0.04 0.59 0.13
6 �0.03 0.11 0.59 0.08
7 �0.12 0.14 0.45 �0.06
8 �0.05 0.24 0.41 �0.06
9 �0.05 0.32 0.27 0.07

10 �0.14 0.57 0.22 0.00
11 �0.01 0.67 0.03 �0.01
12 �0.10 0.78 �0.00 0.02
13 0.22 0.67 �0.12 �0.14
14 �0.01 0.93 �0.15 �0.12
15 �0.13 0.55 �0.19 0.15
16 �0.17 �0.77 �0.43 0.08

Lag-CRP
Lag

�5 �0.08 �0.09 �0.02 0.41
�4 �0.20 0.03 0.02 0.44
�3 �0.05 0.28 �0.10 0.22
�2 0.49 0.06 �0.09 0.24
�1 0.69 �0.09 �0.07 �0.09

1 0.95 �0.01 0.20 �0.22
2 0.39 0.15 �0.05 0.31
3 �0.20 0.04 �0.00 0.59
4 �0.49 �0.01 �0.11 0.35
5 �0.51 �0.04 0.15 0.45

Semantic-CRP
Similarity bin

1 0.42 0.11 0.10 �0.05
2 0.35 0.17 0.04 �0.15
3 0.47 0.07 0.03 �0.13
4 0.54 0.08 �0.11 �0.02
5 0.52 0.09 �0.06 0.14
6 0.43 �0.02 �0.04 0.02
7 0.44 0.04 0.15 �0.04
8 0.52 �0.09 0.03 0.26
9 0.37 �0.06 0.17 0.51

10 0.05 �0.28 0.04 0.58

Note. T � Temporal; R � Recency; P � Primacy; S � Semantic; PFR �
probability of first recall; CRP � conditional response probability.
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ically tune their memory systems to upweight associations that
facilitate performance and downweight those that do not.

To determine how well the factors account for overall recall
accuracy, we can use all four factors to simultaneously predict
recall. Figure 6 shows the results. The figure is essentially a
simultaneous regression, but we present it as a path analysis model
to maintain consistency with more complex analyses we present

later. Each box in the figure represents a variable, and the arrows
connecting the boxes represent the influence of variables on each
other, with the direction of the arrow giving the presumed direction
of the effect (e.g., we assume that the process factors cause
variance in overall recall). The numbers next to the paths are
analogous to standardized beta weights in a regression. Note that
in this and all subsequent path analyses, the factors were allowed
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Figure 4. Mean probability of first recall curves for each of the four clusters of participants identified by
Healey and Kahana (2013). We used k-means clustering with k � 4 to assign each participant to a cluster. A:
The strong recency cluster. B: The moderate recency cluster. C: The primacy cluster. D: The chunking cluster.
Error bars are 95% within-subject confidence intervals (Loftus & Masson, 1994).

Table 2
Mean (�95% Confidence Intervals) Factor Scores, Overall Recall, and IQ by Probability of
First Recall Cluster

Variable

Cluster

Strong recency Moderate recency Primacy Chunking

n total (n with IQ) 35 (24) 57 (44) 8 (5) 41 (28)
Factor 1 (T) �0.30 � 0.33 �0.05 � 0.21 1.03 � 1.04 0.12 � 0.37
Factor 2 (R) �1.19 � 0.10 �0.17 � 0.11 �0.10 � 0.27 1.28 � 0.20
Factor 3 (P) �0.73 � 0.09 �0.13 � 0.16 2.47 � 0.97 0.32 � 0.34
Factor 4 (S) �0.28 � 0.35 0.21 � 0.33 �0.88 � 0.83 0.13 � 0.28
Overall recall 0.59 � 0.04 0.61 � 0.03 0.70 � 0.10 0.63 � 0.04
IQ score 128.88 � 3.96 127.50 � 3.22 129.40 � 14.97 126.79 � 3.91

Note. T � Temporal; R � Recency; P � Primacy; S � Semantic.
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to correlate, but because these correlations are very similar to those
in Figure 5, they are omitted from the path diagrams to improve
clarity. The figure shows that together the four factors account for
83% of the variability in overall recall, suggesting that the recall
dynamics functions provide a near-complete description of recall
dynamics. No doubt other factors (e.g., idiosyncrasies in semantic
relationships not captured by LSA) account for some proportion of
overall recall, but apparently not more than 17%. Examining the
individual paths, we see that the temporal and semantic factors

were significant predictors of overall recall (solid lines represent
significant paths), but that the primacy and recency factors were
not.

Participants who initiate recall from the beginning of the list will
tend to experience output interference that lowers recall of items
from later serial positions, whereas participants who initiate from
near the end of the list will experience interference that lowers
recall of early items (Cowan, Saults, Elliott, & Moreno, 2002). To
ensure that these opposing interference effects were not obscuring
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Figure 5. Correllelogram for the process factors (Factor T � temporal factor, Factor R � recency factor, Factor
P � primacy factor, Factor S � semantic factor), overall recall, and Wechsler Adult Intelligence Scale IV IQ.
All correlations involving IQ have N � 101; all other correlations have N � 141. Plots on the diagonal show
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any true correlation between overall recall and either the primacy
or recency factors, we recalculated the correlations excluding the
eight participants in the primacy subgroup (see Table 2), leaving
only participants who initiate recall from near the end of the list.
Excluding these participants did not change the direction or sig-
nificance of the correlations among the factors, overall recall, and
IQ. That is, variation in how participants initiate recall (which item
they start with) does not predict overall recall success. Instead, it
is how participants transition among items after initiating that is
critical.

Validating the Factor Structure

A strong test of the validity of the factor structure would be to
use the factors computed above to predict performance on a second

data set. Of the 141 participants included in our analyses of
Experiment 1 of PEERS, 127 also completed Experiment 2. We
can use the data from this second experiment to validate the factor
structure we discovered in the Experiment 1 data. One approach
would be to independently rerun the entire factor analysis on the
Experiment 2 data. A more stringent test, however, would be to use
the factors derived in Experiment 1 to predict Experiment 2
performance.

Figure 7 shows the recall dynamics functions for Experiment 2.
Figure 8 shows the squared correlations between each Experiment
1 factor and the Experiment 2 recall dynamics functions, which
can be interpreted in the same way as the squared factor loadings
in Figure 3. Examining Figure 8 reveals that the loading patterns
are quite similar across the three versions of free recall in Exper-
iment 2 and also quite consistent with the loading pattern observed
in Experiment 1. The most notable deviation is that the primacy
and recency factors explain less of the variability in the PFRs from
Experiment 2 than they did for Experiment 1. Why would the
recall initiation factors show less generalization across experi-
ments than the postinitiation transition factors? We suggested that
the variability in PFR functions may reflect, in part, differences in
strategy. It is possible that because Experiment 2 intermixes im-
mediate recall trials, which tend to show a recency initiation
pattern, with delayed trials, which tend to show a shift toward a
primacy initiation pattern (compare the PFR curves in Figure 7),
participants may vary in the extent to which they show this shift,
reducing the predictive power of the initiation factors derived from
Experiment 1. In contrast, the fact that the temporal and semantic
factors tend to correlate with the same recall dynamics function
points across all three recall tasks suggests that the same processes
govern postinitiation dynamics regardless of distractor condition.
That recall initiation is more variable across task type than are
postinitiation dynamics complements our recent finding that across
participants, patterns of recall initiation are much more variable
than are patterns of post-initiation dynamics (Healey & Kahana,
2013).

This interpretation of the relative consistencies of the factors
across task type is supported by examining the ability of the
process factors derived from Experiment 1 to predict overall recall

Figure 6. A path analysis model predicting overall recall from the four
process factors. Each box represents a variable. The arrows connecting the
variables represent hypothesized direct effects of one variable on another;
the numbers next to the arrows are standardized path coefficients and can
be interpreted as standardized regression coefficients. Solid paths are
significant at the .05 level, and dashed paths are nonsignificant. In fitting
the model, the process factors were allowed to correlate, but the paths are
omitted from the diagram for clarity. The R2 value is the proportion of
variance in overall recall accounted for by the process factors. N � 141.
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Figure 7. The recall dynamics functions from the 127 participants who completed Experiment 2 of the Penn
Electrophysiology of Encoding and Retrieval Study. A: Probability of first recall curve. B: Lag-conditional
response probability curve. C: Semantic-conditional response probability curve. Within each panel, the three
lines correspond to immediate free recall (IFR), delayed free recall (DFR), and continual distractor free recall
(CDFR). See the text for details on how these curves are created. Error bars are 95% within-subject confidence
intervals (Loftus & Masson, 1994).
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on the three Experiment 2 tasks. Figure 9 shows path diagrams of
these predictions. For immediate free recall (see Figure 9A), the
pattern is very similar to that seen in Experiment 1 (see Figure 6),
with the temporal and semantic factors both being significant
predictors but the primacy and recency factors being nonsignifi-
cant. This strengthens our claim that variation in postrecall dy-
namics is more diagnostic of episodic memory ability than varia-
tion in recall initiation patterns. An even stronger test is to use the
factors from immediate free recall to predict delayed and continual
distractor tasks. If the three tasks rely on the same mechanisms, as
predicted by retrieved context models (e.g., Polyn et al., 2009), we
would expect the quality of prediction to be quite high. If, how-
ever, the tasks rely on different processes (e.g., short- vs. long-term
memory; Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, &
Usher, 2005), the quality of prediction should suffer. Figures 9B
and 9C show that the quality of prediction is, in fact, excellent: The
immediate free recall factors predict 62% of the variability on
delayed free recall and 51% of the variability on continual distrac-
tor free recall. Once again, the temporal and semantic factors were
significant predictors, but the primacy and recency factors were
not.

The ability of the factor structure derived from immediate free
recall in Experiment 1 to predict delayed recall in Experiment 2 is
particularly striking in that it suggests that any sources of variance
uniquely related to a short-term buffer, which should be emptied
by the distractor, account for a relatively small proportion of the
variance in both overall recall and the dynamics functions. We
note that the R2 for continual distractor free recall is somewhat

lower than for the other two conditions. This suggests the possi-
bility that continual distractor free recall may capture a source of
individual differences that is not (as fully) captured by immediate
free recall. One possibility is that participants may vary in the
extent to which mental context drifts during distractor intervals.

Using Recall Dynamics to Illuminate the
Memory/Intelligence Correlation

The distribution of IQ scores in our sample (see Figure 5), while
roughly normal, is above the population average. Despite this
abbreviated range, which will tend to produce underestimates of
the true correlations between memory and IQ, we found a corre-
lation between overall recall and IQ of .39 (see Figure 5), within
the range reported in meta-analyses (Ackerman et al., 2005).
Squaring this correlation, we found that overall recall accounted
for 15% of the variability in IQ (see Figure 10A). One of the main
goals in the study of individual differences in memory is to
determine which memory processes are responsible for the vari-
ance shared between overall recall and IQ. That is, why does
overall recall success predict IQ? Do the process factors we have
identified here help answer this question?

The first step is to examine the correlations between the factors
and IQ. Figure 5 shows that both the temporal and the semantic
factors are significantly correlated with IQ but that neither the
primacy nor the recency factors are. Next, we ran a simultaneous
regression using the four factors to predict IQ. Together, the
factors accounted for 14% of the variability in IQ scores (see
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Figure 8. Squared loadings mapped onto the recall dynamics functions of Experiment 2 of the Penn
Electrophysiology of Encoding and Retrieval Study: A: Probability of first recall curve. B: Lag-conditional
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Figure 10B), with the temporal factor being the strongest predictor.
Note that overall recall and the process factors account for almost
identical proportions of variance in IQ (i.e., 15% and 14%, respec-
tively). If the process factors are measuring individual differences
in the memory processes that drive the correlation between overall
recall and IQ, we should find that the factors and overall recall
account for overlapping portions of the variability in IQ.

To test if our factors fully account for the relationship between
memory and IQ, we conducted a commonality analysis (Nimon,
Lewis, Kane, & Haynes, 2008). A commonality analysis takes the
total variance in one variable explained by a set of predictor
variables and attempts to break it down into variance that is
uniquely accounted for by one predictor (but not others) and
variance that is explained by several predictors (i.e., shared vari-
ance). Commonality analysis has previously been used to partition
the variance in IQ explained by working memory versus episodic
memory tasks (Unsworth & Spillers, 2010). If you imagine all of
the variation in IQ as a pie, the variability accounted for by overall
recall would be a slice (15%) of the pie. The bar in Figure 11
represents that slice of the pie. We can further divide the slice into
parts that represent variability uniquely explained by recall (but
not the factors) and variance that is common to overall recall and
the factors. Our prediction is that the portion unique to overall
recall will be small. Consistent with our prediction, less than 20%

(i.e., less than 3% of the entire IQ pie) of the variance was unique
to overall recall. That is, overall recall and the factors account for
almost completely overlapping variance in IQ, suggesting that
recall dynamics capture the processes that allow memory to predict
IQ.

This view of the relationship among the factors, overall recall,
and IQ is made explicit in the path analysis model in Figure 12. As
we discussed in the introduction, the standard approach to deter-
mining whether a particular cognitive process accounts for the
relationship between memory and IQ is to statistically control for
variation in a third task that measures the process in question. This
mediation logic assumes that the third task provides a purer, or
more sensitive, measure of the process in question than does either
memory or IQ. By contrast, we have extracted measures of mem-
ory processes directly from detailed measures of task performance
rather than using a nonmemory proxy task. That is, overall recall
contains the same information as our process factors but com-
presses the information into a single measure; our factors uncom-
press the data.

Consistent with the logic that the factors represent the processes
contributing to overall performance, the path model in Figure 12
includes direct paths from each factor to overall recall, which in
turn has a direct path to IQ. Each factor also has an indirect path
to IQ via its influence on overall recall. In the language of path

Figure 9. Path analysis models predicting overall recall from the four process factors for each condition of
Experiment 2. A: Immediate free recall. B: Delayed free recall. C: Continual distractor free recall. Each box
represents a variable. The arrows connecting the variables represent hypothesized direct effects of one variable
on another; the numbers next to the arrows are standardized path coefficients and can be interpreted as
standardized regression coefficients. Solid paths are significant at the .05 level, and dashed paths are nonsig-
nificant. In fitting the models, the process factors were allowed to correlate, but the paths are omitted from the
diagram for clarity. The R2 values are the proportion of variance in overall recall accounted for by the process
factors. N � 127.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1564 HEALEY, CRUTCHLEY, AND KAHANA



analysis, our prediction is that these indirect effects of the process
factors on IQ via overall recall should account for the bulk of the
direct effect of overall recall on IQ. As expected, the direct effects
of the factors on IQ are all nonsignificant. Indeed, constraining the
direct paths from each of the factors to IQ to be equal to zero
provided a very good fit to the data, 	2(4) � 2.3, p � .68. That is,
none of the factors directly contribute to variation in IQ. Instead,
their effects are mediated by their influence on overall recall.

Discussion

Performance on memory tasks predicts many other cognitive
abilities (Daneman & Carpenter, 1980; Jacobs, 1887; Mogle et al.,
2008). To better understand which memory processes underlie
these correlations, we examined individual differences in measures
of recall dynamics. We found that four distinct factors contribute
to individual differences in memory search: a tendency to initiate
recall from near the end of the list (recency), a tendency to initiate
from near the beginning of the list (primacy), a temporal factor
corresponding to transitions mediated by temporal associations,
and a semantic factor corresponding to transitions mediated by
long-standing semantic associations. We showed that the four

factors account for 83% of the variability in overall recall, sug-
gesting that they provide a near-complete description of the pro-
cesses that contribute to individual differences in recall success. To
validate this factor structure, we used the factors computed from
immediate free recall in PEERS Experiment 1 to predict recall
performance in PEERS Experiment 2: The Experiment 1 factors
accounted for 60%, 62%, and 51% of the variance in Experiment
2 immediate, delayed, and continual distractor recall, respectively.
Moreover, the factors accounted for over 80% of the relationship
between memory and IQ, with the temporal factor being the most
important single factor.

Implications for Models and Theories

The factor structure reported here places a new class of con-
straints on memory models. The dominant approach to model
validation has been to fit models to data averaged across partici-
pants. An accurate model of memory search, however, should also
account for differences among individuals, that is, the covariance
of the data. To our knowledge, no attempt has been made to fit the
covariance structure of recall dynamics. Some preliminary obser-
vations are possible, however. For example, under dual-store mod-
els, temporal contiguity effects emerge from items spending time
together in short-term memory; short-term memory also power-
fully influences the tendency to initiate recall from the end of the
list, which may suggest temporal contiguity and initiation would
share variance. Under retrieved context models, which assume
memory is mediated by associations between items and a drifting
internal context representation, there is also reason to predict
contiguity and initiation should be correlated, as both mechanisms
are influenced by a common context drift rate parameter. Contrary
to these intuitive predictions, we found that recall initiation and
temporal contiguity are largely independent. Future modeling
work should explore whether existing models can simulate the
factor structure discovered here.

For the individual difference literature, our results provide a
fresh perspective on which memory processes correlate with IQ.
Most of the correlation between memory and IQ is accounted for
by individual differences in temporal contiguity: Individuals who

Figure 11. Commonality analysis of correlation between overall recall
and IQ. The bar represents all of the variability in IQ that is accounted for
by overall recall (i.e., 15%). The shaded regions represent the portion of
that variability that is uniquely accounted for by overall recall and the
portion that is shared with the process factors. There is a small unique
contribution of overall recall, but most is shared with the temporal and
semantic factors. A small portion (the white region at the top of the bar) is
shared with the primacy or recency factors or with multiple factors. N �
101. Prec � probability of recall.

Figure 10. Path analysis model predicting IQ from overall recall (Panel
A) and the four process factors (Panel B). Each box represents a variable.
The arrows connecting the variables represent hypothesized direct effects
of one variable on another; the numbers next to the arrows are standardized
path coefficients and can be interpreted as standardized regression coeffi-
cients. Solid paths are significant at the .05 level, and dashed paths are
nonsignificant. In fitting the models, the process factors were allowed to
correlate, but the paths are omitted from the diagram for clarity. The R2

values are the proportion of variance in overall recall accounted for by the
process factors. N � 101.
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show stronger temporal clustering tend to recall more items and
have higher IQs. This finding is not an obvious prediction of
theories that assume that individuals with higher IQs can recall
more items because they can hold more items in working memory
(Kane et al., 2007; Oberauer, 2002). Indeed, it is difficult to predict
how variation in working memory storage capacity would impact
temporal clustering. Under most dual-store memory models (e.g.,
Kimball, Smith, & Kahana, 2007; Raaijmakers & Shiffrin, 1981;
Sirotin, Kimball, & Kahana, 2005), temporal associations are
formed between items that spend time together in working mem-
ory (see Cowan, Donnell, & Saults, 2013, for empirical evidence
of this assumption). Therefore, one possible prediction is that
individuals who hold more items in working memory at a time will
form longer range temporal associations. Longer range temporal
associations would lead to more transitions at longer lags (i.e., a
shallower lag-CRP curve) and fewer transitions at the short lags
that load strongly on the temporal factor. Therefore, one would
expect individuals with large working memory capacities to have
lower temporal factor scores. An alternative prediction is that
having more items in working memory at once will allow the
formation of longer chains of associated items. For example, a
small working memory capacity individual may form associations
between two items (A and B), whereas a large working memory
capacity individual may form associations among four items (A, B,
C, and D). If participants tend to recall items in serial order within

such chains (e.g., because each item serves as a cue for the next
item in the chain; Lohnas & Kahana, 2014), then the higher
capacity individual would make more short-lag transitions (A to B,
B to C, C to D) than would the lower capacity individual (A to B),
leading to a steeper lag-CRP curve.3 In our view, rigorous mod-
eling will be required to clarify these predictions and determine if
dual-store models are consistent with the factor structure we have
described here.

The ability of the factors derived from immediate free recall in
Experiment 1 to account for roughly equal amounts of variance in
both immediate and delayed recall in Experiment 2 (i.e., 60% and
62%, respectively) is also challenging for theories that emphasize
working memory. From a dual-store perspective, one may have
predicted that variance related to the short-term buffer would be
more important in predicting performance in immediate than de-
layed recall because the distraction-filled delay would empty the
buffer, forcing participants to rely on other memory processes.

The data are more easily interpreted within frameworks that
assume that although working memory capacity is an important
correlate of IQ, the ability to efficiently search long-term memory
is also key (e.g., Unsworth & Engle, 2007). Spillers and Unsworth
(2011) found that individuals with large working memory span

3 We thank Nelson Cowan for suggesting this alternative prediction.

Figure 12. Path analysis model of the effects of the process factors and overall recall on IQ. Each box
represents a variable. The arrows connecting the variables represent hypothesized direct effects of one variable
on another; the numbers next to arrows are standardized path coefficients and can be interpreted as standardized
regression coefficients. Solid paths are significant at the .05 level, and dashed paths are nonsignificant. The direct
paths from the factors to IQ were constrained to zero in the final model; the estimates from the nonconstrained
model are provided in italics for completeness. In fitting the model, the process factors were allowed to correlate,
but the paths are omitted from the diagram for clarity. The R2 values are the proportion of variance in overall
recall accounted for by the process factors and overall recall. N � 101.
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scores showed more temporal clustering than individuals with
lower span scores. Drawing from retrieved context models that
assume memory is mediated by associations between items and a
drifting mental context representation, they argued that this differ-
ence resulted from low-span individuals being less able to use
contextual information associated with a just-recalled item to
guide retrieval of the next item. Promising theories such as this
highlight the value of bringing the individual differences and
episodic memory modeling literatures into closer contact. Below,
we sketch how episodic memory models might further illuminate
the connections between temporal contiguity, memory ability, and
IQ.

Temporal Contiguity and Intelligence

The temporal factor, corresponding to a tendency to make near
temporal transitions, was most predictive of memory accuracy and
IQ. What does the importance of temporal contiguity tell us about
memory and IQ?

One possibility is that the degree of temporal contiguity a
participant shows in free recall is a measure of his or her ability to
adapt to the demands of the task. Such adaptation may be achieved
by dynamically tuning the relative influence of different types of
associations as required by the demands of different tasks (Healey
& Kahana, 2013). For example, when recalling lists that contain
pairs of words with moderate semantic associations, such as those
used here, it is likely beneficial to allow both existing semantic
associations and new temporal associations to guide recall. Con-
sistent with this suggestion, we found that although the temporal
factor was the most important in predicting recall success and IQ,
the semantic factor was also correlated with recall (r � .56) and
was the second most important factor in predicting IQ. Free recall
of completely random lists is likely to benefit from increasing the
influence of temporal associations and downtuning the influence
of semantics, consistent with the finding of Sederberg et al. (2010)
that temporal but not semantic clustering correlated with recall for
random lists. Dynamically tuning the memory system to adapt to
the demands of a task likely occurs outside of conscious awareness
in response to experience with the task. For example, in the serial
recall task, relying on existing semantic associations is likely to
impair recall, and it would be optimal to have temporal associa-
tions dominate recall. Klein, Addis, and Kahana (2005) found that
across multiple study-test trials with the same list, participants
showed progressively stronger temporal clustering. And Golomb,
Peelle, Addis, Kahana, and Wingfield (2008) found that younger
adults showed weaker semantic clustering in serial recall com-
pared to free recall. Intelligence tasks likely require a similar
ability to quickly tune cognitive systems to optimally meet the task
demands.

Although the ability to dynamically adapt to task demands is
likely part of why strong temporal clustering predicts recall suc-
cess and IQ, retrieved context models of the contiguity effect (e.g.,
Polyn et al., 2009) suggest a deeper connection between clustering
and intellectual ability. To illustrate, we must first describe how
temporal contiguity arises in such models: When an item is pre-
sented, it becomes associated with an internal context representa-
tion. The context representation drifts through a high-dimensional
space as items are presented, but in an autocorrelated fashion so
that items presented in temporal proximity become associated with

similar contextual states. During retrieval, context is used as a cue.
When item i is recalled, its associated context is retrieved and
integrated into the context representation that cues the next item.
This retrieved context is a strong cue for items presented near i as
those items were associated with similar contexts, giving rise to the
temporal contiguity effect.

Recall success may depend on a participant’s ability to regulate
the drift of his or her context representation such that each recalled
item retrieves a context that serves as an effective cue for another
list item. We can picture the current state of context as a point in
multidimensional space. When context drifts, it moves to another
part of the space. Some parts of the space (i.e., different possible
states of context) were active during the study phase and became
associated with list items. Other parts of the space were not active
during study and are not strongly associated with list items. There-
fore, allowing mental context to drift to some parts of this space
will result in a highly effective cue for list items, whereas allowing
it to drift to other parts of the space will provide a very poor cue.
Participants may vary in the ability to guide context toward favor-
able parts of the space, perhaps by using the current state of
context to weight the retrieved state of context, preventing it from
drifting too far from the context associated with list items. The
converse of guiding context to favorable states is preventing it
from drifting to states that make nonlist items, such as those that
were presented on earlier lists or those that are semantically related
to true list items, more accessible. Such context gating could be
used to demarcate list boundaries, making task-irrelevant memo-
ries inaccessible, and may reflect the computational basis of the
ability to resolve interference (Healey, Campbell, Hasher, & Os-
sher, 2010; Healey, Ngo, & Hasher, 2014).

How do context regulation and gating relate to intelligence? A
simple answer is that any complex task requires selective memory
access. A deeper answer, however, is suggested by Duncan’s
(2010) idea of a multiple-demand system. Under this view, frontal
neurons instantiate distinct connection patterns reflecting current
task demands, with orthogonal connection patterns across different
phases of an experiment forming boundaries between different
tasks. This notion of rapidly changing frontal networks is closely
related to the notion of an internal context representation that
dynamically modulates the accessibilities of various memories. It
may be that the ability to use internal contextual representations to
dynamically gate access to relevant memories and response ten-
dencies is a basic computational principle across tasks and a key
component of intelligence.
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