
www.elsevier.com/locate/ynimg
NeuroImage 32 (2006) 978 – 987
EEG oscillations and recognition memory: Theta correlates of

memory retrieval and decision making

Joshua Jacobs,a Grace Hwang,b Tim Curran,c and Michael J. Kahanab,*

aNeuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
bDepartment of Psychology, University of Pennsylvania, 3401 Walnut Street, Room 303C, Philadelphia, PA 19104, USA
cDepartment of Psychology, University of Colorado at Boulder, Boulder, CO 80309, USA

Received 29 December 2005; revised 7 February 2006; accepted 8 February 2006

Available online 12 July 2006
Studies of memory retrieval have identified electroencephalographic

(EEG) correlates of a test item’s old–new status, reaction time, and

memory load. In the current study, we used a multivariate analysis to

disentangle the effects of these correlated variables. During retrieval,

power of left-parietal theta (4–8 Hz) oscillations increased in

proportion to how well a test item was remembered, and theta in

central regions correlated with decision making. We also studied how

these oscillatory dynamics complemented event-related potentials.

These findings are the first to demonstrate that distinct patterns of

theta oscillations can simultaneously relate to different aspects of

behavior.
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Introduction

Understanding the functional role of human electroencephalo-

graphic (EEG) oscillations is complicated by the fact that

oscillatory patterns have been observed to correlate with multiple

experimental manipulations. For example, in recent memory

studies, theta (4–8 Hz) oscillations correlated with memory load

(Jensen and Tesche, 2002), task difficulty (Gevins et al., 1997),

error processing (Luu et al., 2004), stimulus type (Hwang et al.,

2005), and recognition of previously viewed stimuli (Klimesch et

al., 2000; Klimesch et al., 2006). Oscillations at other frequencies,

in addition to theta, have also been observed to vary with task

variables: Alpha (9–12 Hz) power was observed to increase with

memory load in simple working-memory tasks (Jensen et al., 2002)

but to decrease as memory load increased during more demanding

tasks (Gevins et al., 1997). Gamma (30–60 Hz) power has been
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observed to correlate with memory load (Howard et al., 2003),

stimulus novelty (Gruber and Matthias, 2005), attention (Tallon-

Baudry et al., 2005), and reaction time (Gonzalez Andino et al.,

2005; Jokeit and Makeig, 1994). Similarly, studies of spatial

memory have reported increased theta power during learning of

long as compared to short mazes, movement as compared to

stillness, retrieval as compared to encoding, and searching for

randomly placed targets as compared to searching for fixed-

location landmarks (Kahana et al., 1999; Caplan et al., 2001, 2003;

Ekstrom et al., 2005; de Araujo et al., 2002). One recent study

(Bastiaansen et al., 2005) directly illustrates the complexity of

determining how EEG oscillations correlate with task variables:

during visual word presentation, left-posterior theta power simul-

taneously correlated with both word length and whether a word

served a primarily semantic (e.g., nouns and verbs) or a primarily

syntactic (e.g., prepositions and conjunctions) function. Consistent

with these reports, recent reviews (Buzsáki, 2002; Bastiaansen and

Hagoort, 2003; Kahana et al., 2001) describe a diverse array of

relations between oscillations and behavior, with no single pattern

emerging clearly.

One difficulty in using memory tasks to study EEG oscillations

is that an experimental manipulation may cause a change in

response accuracy or reaction time (RT). In these cases, it can be

unclear if an observed EEG pattern is a direct correlate of the

manipulation itself, or if it is more closely related to the accuracy–

RT change. An example of this is the linear relation between study

list length and RT in working-memory tasks (Sternberg, 1966).

This list-length–RT relation makes it difficult to distinguish

whether an EEG pattern that correlates with list length is actually

a direct result of an increase in RT. In addition to list length, other

experimental manipulations, such as the position of a memory

probe in a just-presented list (Forrin and Cunningham, 1973), also

influence RT, thus creating more potential confounds. This type of

issue has surfaced in recent EEG publications, where it has been

observed that theta power increased during experimental manip-

ulations that raised task difficulty, such as increases in stimulus

complexity (Gevins et al., 1997) or memory load (Jensen and

Tesche, 2002). Although these EEG patterns could be interpreted
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as direct correlates of stimulus changes, another interpretation is

that these patterns were related to a more general phenomenon:

increased RT.

To address these concerns, we considered the possibility that

EEG oscillations simultaneously relate to multiple aspects of

behavior. Thus, we designed a framework to analyze how power of

EEG oscillations simultaneously correlates with task variables

(experimental manipulations and RT) in a working-memory task.

This approach has two main benefits: First, by simultaneously

analyzing how task variables relate to oscillatory power, it is

possible to distinguish which variable best predicts an oscillatory

pattern. Second, our framework is capable of identifying oscilla-

tory patterns that correlate with multiple task variables.

Because working-memory studies have found EEG oscillations

to be correlated with a wide range of variables, and because the

behavioral data in such studies are well characterized (Sternberg,

1975), we sought to simultaneously examine the relation of EEG

oscillatory power—across a broad range of frequencies, after-probe

latencies, and electrodes—with each of the major variables that

characterize working-memory performance. Subjects performed

the Sternberg working-memory task while EEG was recorded at

129 scalp electrodes. On each trial, subjects were asked to judge

whether a test probe was a member of a just-presented list of

consonants. We varied the number of list items, whether the probe

matched one of the studied items, and (if so) the position of the

probe in the list. We fit a multivariate linear model to predict EEG

oscillatory activity after probe using details of each presented list

and RT. An analysis of this model identified oscillatory correlates

of probe old–new status, RT, memory load, and study–test lag.
Methods

Participants

Eighteen right-handed University of Colorado students (6 males

and 12 females) were paid to participate in two experimental

sessions. All subjects were between the ages of 19 and 29. Two

subjects participated in only a single session because of technical

difficulties.

Procedure

In each of 576 trials, which were distributed across two sessions

on different days, subjects viewed a list of 2, 4, or 6 consonants

followed by a test probe. All interstimulus intervals (ISIs) were

randomly jittered to decorrelate evoked activity across stimulus

presentations. Trials began with presentation of a fixation cross for

1 s, followed by a 100–300-ms ISI. Each consonant was then

presented for 750 ms, followed by a 200–300-ms ISI. The final list

item was followed by a 200–300-ms ISI, and then subjects were

presented with a memory probe, shown in red (all other items were

displayed in white against a black background). In response to the

probe, subjects were asked to press a key on a keyboard indicating

as quickly as possible if the probe was a target (i.e., an item

presented on the study list) or a lure (i.e., an item that was not on

the study list). The specific keys used for indicating target and lure

responses were counterbalanced across subjects. List length, probe

target– lure status, and (for target trials) probe position were

determined randomly for each trial. Both response accuracy and

RT were recorded.
Scalp voltages were measured with a 129-channel Geodesic

Sensor Net connected to an AC-coupled, high-input-impedance

amplifier (200 MV, Net Ampsi, Electrical Geodesics, Inc.,

Eugene, OR). Amplified analog voltages (0.1–100 Hz bandpass,

�3 dB) were sampled at 500 Hz. Individual sensors were adjusted

until impedances were less than 50 kV. EEG was measured with

respect to an average reference. The average reference was

computed by subtracting the mean voltage across all electrodes

from the voltage measured at each individual electrode (Dien,

1998). Trials in which a blink was recorded within 1000 ms of the

probe were discarded (blinks were located by monitoring electro-

oculogram for voltages over 70 AV). Overall, 4% of trials were

discarded because of blinks.

Oscillatory analyses

A Morlet wavelet transform (6 cycles) was used to compute

EEG oscillatory power at 9 time points after each probe (0,

100, . . . , 800 ms) for 21 logarithmically spaced frequencies

between 2 and 64 Hz (2x/4 Hz for x Z 4, . . . , 24). We then

converted each subject’s log-transformed power P in each trial i

to a Z score at each frequency f, time point t, and electrode e:

Z f ;t;eð Þ ið Þ ¼
P f ;t;eð Þ ið Þ � l f ;t;eð Þ

r f ;t;eð Þ
ð1Þ

l( f ,t ,e ) and r( f ,t ,e ) are the mean and standard deviation,

respectively, of the subject’s log-transformed oscillatory power

at frequency f, time point t, and electrode e across all trials. Eq.

(1) was computed separately for each subject, and then all

subjects’ trials were combined into a single data set.

We next used a multivariate linear model to characterize the

relation between oscillatory power and task variables at each

frequency, time point, and electrode. Fitting data from only correct

trials (errors were rare), we used ordinary least squares (OLS) to

estimate values for the bs in the following model:

Z f ;t;eð Þ ¼ bTL
f ;t;eð ÞTLþ bRTQ

f ;t;eð ÞRTQþ bLL
f ;t;eð ÞLLþ bLag

f ;t;eð ÞLag

þ bTLC
f ;t;eð ÞTLCþ e ð2Þ

TL is a dummy variable indicating whether each trial’s probe is

target (1) or lure (0). RTQ indicates each trial’s RT quartile (1 =

fastest responses, 4 = slowest). To compute RTQ, RTs from each

trial were binned by rank into quartiles individually for each

subject. This procedure ensures that fast- and slow-responding

subjects contribute equally to each RTQ label, to allow us to

study relative RT changes. LL indicates each trial’s study list

length. Lag indicates how recently the probe was studied. In

target trials, Lag is the number of stimuli between the probe’s

study presentation and the end of the study list. In lure trials, Lag

is equal to LL.

Finally, TLC (target– lure confidence) is a variable intro-

duced to represent the interaction between TL and RTQ.

Specifically, TLC combines TL and RTQ to quantify the match

between the test probe and memory of the just-presented list.

Given the well-documented correlation between RT and

response confidence (Murdock, 1974), we expected fast target

responses when subjects were confident that they had previ-

ously viewed the probe—an indication that the probe closely

matched their memory of a list stimulus. Inversely, we expected

fast lure responses when subjects were confident they had not
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viewed the probe, indicating that the probe was very different

from their memory of list stimuli. We expected slower

responses when there was a moderate degree of match between

the probe memory of the list. TLC has values between 1 and 4

for the four values of RTQ for lure responses, ordered from

fastest to slowest, and between 5 and 8 for the four values of

RTQ for target responses, ordered from slowest to fastest. Thus,

an EEG pattern that correlates with TLC indicates the degree of

match between the probe and the memory of the just-presented

list.

We Z-transformed the computed values of the task variables,

obviating the need for a constant term in Eq. (2). Positive values of

bTL, bRTQ, bLL, bLag, and bTLC indicate increased oscillatory

power in trials with target probes, slow responses, long lists, probes

for recently viewed stimuli, and high memory confidence,

respectively. e indicates the residual from the linear model.

Topographic plots were created with the topoplot function from

EEGLAB (Delorme and Makeig, 2004).

Correcting for multiple comparisons

Since Eq. (2) is applied at a number of frequencies, time

points, and electrodes, it was necessary to adjust our significance

threshold to control the number of times we falsely rejected the

hypothesis that b was 0. Each fit of the model in Eq. (2) resulted

in five P values (one for each b); the model was fitted at each of

129 electrodes, 8 after-probe time points, and 21 frequencies,

resulting in (5 � 129 � 8 � 21) 108,360 statistical comparisons.

We analyzed the resulting distribution of P values with the False

Discovery Rate (FDR) procedure (Genovese et al., 2002) to

compute a P threshold of 0.0039 that sets the rate of falsely

rejected null hypotheses to 5%. This procedure ensures a less

than 5% rate (on average) of false positives among any null

hypotheses we reject at P < 0.0039. In the accompanying figures,

we plot b as 0 (green) when the corresponding P � 0.0039,

meaning that colored (e.g., red or blue) points on plots indicate

that P < 0.0039. Thus, the FDR-determined P threshold indicates

that a colored data point has a �95% chance of being a correct

rejection of the null hypothesis and a <5% chance of being a

false positive.
Results

RT increased approximately linearly as list length increased

from 2 to 6 items (627 T 26 ms, 678 T 27 ms, and 736 T 31 ms

for list lengths 2, 4, and 6, respectively). Error rates showed a

similar increase with list length (2.7% T 0.5%, 5.2% T 1%, and

10.3% T 1% for list lengths 2, 4, and 6, respectively). This

pattern is in agreement with previous observations (Sternberg,

1966). The overall high level of accuracy led us to discard trials

containing incorrect responses. The mean RTs of trials with each

RTQ label were 498 T 16 ms, 589 T 22 ms, 682 T 28 ms, and

805 T 42 ms, ordered from fastest to slowest. Behavioral statistics

were calculated across subjects and reported as mean T standard

error.

Fig. 1 summarizes the results of our regression model (Eq. (2))

at various electrodes. In subsequent sections, we focus on detailing

the patterns that were robust at a range of electrodes, frequencies,

and time points. These included bTL and/or bTLC, which was

positive at ¨4 Hz, ¨300–800 ms after probe in the left-parietal
region (see Figs. 1B–D). bRTQ was positive at central electrodes at

¨7 Hz, ¨500–800 ms after probe (see Fig. 1H), and at widespread

electrodes at ¨32 Hz, 0–400 ms after probe (see Figs. 1A–D,

G–J). bLL was negative at ¨3–7 Hz, 0–400 ms after probe at

widespread electrodes (see Figs. 1A, B, D–J). Finally, bLag was

negative at 2 Hz, 0–400 ms after probe at left-parietal electrodes

(see Figs. 1C–E).

Oscillatory correlates of memory recognition (TL and TLC)

We observed increased left-parietal theta power following

target probes (indicated by positive values of bTL in Figs. 1B–

D). To further illustrate the theta target– lure phenomenon, Fig.

2A plots left-parietal theta (4 Hz) power for the fastest and

slowest quartiles of target and lure trials. At 300 ms after probe,

theta power was greater following target probes than following

lures. Furthermore, this pattern was magnified in trials when

subjects responded quickly—a finding that inspired us to create

the TLC variable to directly study the interaction between TL and

RTQ.

At a left-parietal electrode (Fig. 1D), we observed that bTLC but

not bTL was positive at 4 Hz, 300 ms after probe, indicating that

theta power at this time point is best predicted by the degree of

match between the probe and memory contents. However, at 4 Hz,

400–800 ms after probe, bTL but not bTLC was positive, indicating

that theta power is best predicted by whether the probe is a target or

lure (TL) rather than by TLC. Fig. 2B topographically plots bTLC

at 4 Hz, 300 ms after probe, illustrating that the effect localizes to

the left-parietal region. Likewise, Fig. 2C topographically plots

bTL at 4 Hz, 500 ms after probe.

Oscillatory correlates of reaction time (RTQ) in decision making

Fig. 1H indicates that bRTQ at a central electrode is positive at

¨4–8 Hz, ¨400–900 ms after probe, indicating increased theta

power in trials in which subjects responded slowly. To further

illustrate this relation, Figs. 3A and B plot the time courses of

theta (7 Hz) power at this electrode, aligned to the probe and

response, respectively. Fig. 3A shows that theta power consis-

tently increased after the probe’s onset, and remained elevated

for a duration proportional to RTQ. Fig. 3B shows that theta

power began to decrease shortly before the response. Fig. 3C

topographically plots bRTQ at 7 Hz, 600 ms after probe,

indicating that the theta–RTQ relation localized to central

electrodes. Beta and gamma oscillations also correlated with

RTQ (see Fig. 1H): 16–32 Hz power was elevated at ¨0–400

ms after probe in trials with slow RTs, as indicated by positive

values of bRTQ. Fig. 3D plots bRTQ at 32 Hz, 100 ms after

probe, indicating that this phenomenon is present at widespread

electrodes.

Oscillatory correlates of memory load (LL)

Figs. 1D–J illustrate negative values of bLL at 4–8 Hz, 100–

500 ms after probe, indicating increased theta power for short

compared to long lists. This relation is detailed in Fig. 4A, where

4-Hz power at a right-parietal electrode, 100 ms after probe, is

plotted as a function of list length and lag. Fig. 4B plots the

topography of bLL at 4 Hz, 100 ms after probe, illustrating negative

relations between theta power and LL at widespread electrodes.

This pattern occurs so early after the probe’s onset (0–100 ms after



Fig. 1. Regression analysis of oscillatory correlates of behavior. At each electrode, positive values for bTL, bRTQ, bLL, bLag, and bTLC indicate increased

oscillatory power in trials with target probes, slow responses, long lists, probes for recently viewed items, and high memory confidence, respectively.

Electrode positions are indicated by position on electrode map (nose is up). bs are plotted as a function of frequency and after-probe time point. bs with

an associated P � 0.0039 are plotted as 0 (green). (A) Electrode 25 (F3). (B) Electrode 42 (C5). (C) Electrode 51 (TP7). (D) Electrode 53 (P3). (E)

Electrode 66 (PO7). (F) Electrode 124 (F4). (G) Electrode 104 (C6). (H) Electrode 107 (immediately right-anterior to CZ). (I) Electrode 87 (P4). (J)

Electrode 85 (PO8).
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probe) that it probably relates to maintaining the studied list in

memory rather than to probe processing.

Oscillatory correlates of probe position (Lag)

Figs. 1C–E describe negative values for bLag at 2 Hz,

indicating increased delta power following probes for recently

viewed items. Fig. 4C details this relation by plotting 2-Hz power

as a function of lag at PO7. Fig. 4D plots the topography of bLag at

2 Hz, 300 ms after probe, indicating that this pattern localized to

the left-occipital region.

Distinguishing oscillatory and event-related potential (ERP)

correlates of behavior

Event-related potential (ERP) memory studies have reported a

left-parietal voltage increase following presentation of target

probes (Friedman and Johnson, 2000). Since the time course and
topography of this phenomenon are similar to the bTL patterns we

observed (Fig. 2), we were interested in determining if these

phenomena were directly related. Thus, we designed a framework

to distinguish oscillatory and ERP correlates of task variables.

First, we performed dual univariate regressions to study how

oscillatory power and probe-evoked voltage related independently

to a task variable:

Y ¼ bpow

f ;t;eð Þpow f ;t;eð Þ þ e ð3Þ

Y ¼ bERP
t;eð ÞERP t;eð Þ þ e : ð4Þ

Y is a placeholder for one of the task variables described above.

Indices f, t, and e represent the frequency, after-probe time point,

and electrode of interest. ERP(t ,e) indicates the baseline-corrected,

Z-transformed voltage at after-probe time point t. Voltage is

baseline corrected to the average voltage �100–0 ms relative to

the probe. Each subject’s data were individually Z-transformed and



Fig. 2. Relation between probe target– lure status (TL) and left-parietal theta power. (A) Normalized after-probe theta (4 Hz) power at a left-parietal electrode

(P3) for the fastest and slowest quartiles of responses, for targets and lures. Power at each time point for each quartile is normalized (Z-transformation) relative

to the distribution of power values at stimulus onset (0 ms). (B) Topographic plot of bTLC at 4 Hz, 300 ms after probe. (C) Topographic plot of bTL at 4 Hz, 500

ms after probe. In panels B and C, bs with an associated P � 0.0039 are plotted as 0 (green).
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then combined into a single dataset. Thus, the regression-

determined bERP and bpow indicate Y’s independent relations with

oscillatory power and evoked voltage, respectively.

To quantify the nature of any correlations between the

respective relations of evoked voltage and oscillatory power to
Fig. 3. EEG oscillations and reaction time (RTQ). (A) Theta (7 Hz) power at a cen

onset, for trials with different RTQ labels. (B) Theta (7 Hz) power at this same

transformed relative to 0 ms. (C) Topographic plot of bRTQ at 7 Hz, 600 ms after pr

bRTQ with an associated P � 0.0039 is plotted as 0 (green).
task variables, we performed a bivariate regression to use these

variables simultaneously to predict task variable Y:

Y ¼ bERP bi
f ;t;eð Þ ERP t;eð Þ þ bpow bi

f ;t;eð Þ pow f ;t;eð Þ þ e : ð5Þ
tral electrode (107, immediately right-anterior to CZ), aligned to the probe’s

electrode aligned to subject’s response. In panels A and B, power is Z-

obe. (D) Topographic plot of bRTQ at 32 Hz, 100 ms after probe. In C and D,



Fig. 4. Oscillatory power as a function of list length (LL) and lag since first probe presentation (Lag). (A) Theta (4 Hz) power 100 ms after probe at electrode 79

(immediately medial to P4). Power is plotted as a function of lag since first probe presentation, grouped by list-length. (B) bLag at 4 Hz, 100 ms after probe,

plotted topographically. (C) Delta (2 Hz) power 300 ms after probe at PO7. (D) bLag at 2 Hz, 300 ms after probe, plotted topographically. In panels A and C,

error bars denote 95% confidence intervals. In panels B and D, bs with an associated P � 0.0039 are plotted as 0 (green).
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To study how ERPs and oscillatory power relate to TL, we

compared the regression-determined bs from Eqs. (3) and (4)

to those from Eq. (5), substituting TL for Y. To the extent that

b( f ,t,e)
ERP–bi m b(t ,e)

ERP, or b( f ,t ,e)
pow–bi m b( f ,t ,e)

pow , then oscillatory power and

ERPs are correlated in their relation to Y. For example, if

|b( f ,t ,e)
ERP–bi| < |b(t,e)

ERP|, it indicates that part of the relation of probe-

evoked voltage to Y is best captured by means of oscillatory power.

Inversely, if b( f,t,e)
ERP–bi = b(t,e)

ERP , it indicates that ERPs and oscillatory

power independently correlate with Y.

Fig. 5A plots bpow at electrode P3, indicating that from 250 to

500 ms after probe, target probes elicit greater 4-Hz power than

do lures. Fig. 5B plots bERP, indicating that target probes elicit

greater voltage than do lures from 200 to 300 ms after probe, and

lures elicit greater voltage than do targets from 400 to 600 ms

after probe. To determine if the oscillatory and ERP target– lure

effects correlate at each time point, Figs. 5C and D plot bpow–bi

and bERP–bi. bpow–bi and bERP–bi show the same trends as bpow

and bERP, indicating that b’s value did not vary according to

whether it was computed in the univariate (Eqs. (3) and (4)) or

bivariate (Eq. (5)) regressions. From this finding, we inferred that

theta power changes do not fully account for the ERP target– lure

effect.

Since ERP lag effects have been characterized previously

(Golob and Starr, 2004), we were interested in determining if the

oscillatory lag effects that we observed (e.g., Fig. 4C) were

correlated with ERP effects. Fig. 6A compares ERP and oscillatory

correlates of Lag, indicating that from 0 to 500 ms after probe,

increased 2–4-Hz power occurred following recently viewed

probes (small values of Lag). Fig. 6B indicates that, at 200 ms

after probe, increased voltage is associated with larger values of

Lag, as indicated by positive values of bERP. At this time point,
however, bERP–bi at 2–4 Hz is not significantly positive (Fig. 6D),

indicating a correlation between the 2–4-Hz and ERP Lag effects.

ERP correlates of response confidence

Previous studies found that negative voltage deflections in

response-locked ERPs were greatest in magnitude when subjects

responded incorrectly (Luu et al., 2004; Pailing et al., 2000).

Since our data indicated that RTQ can measure response

confidence, we studied how response negativity related to

confidence by studying response-locked ERPs for different values

of RTQ. Fig. 7 plots the response-locked ERP for correct

responses at a central electrode grouped by RTQ. ERPs are most

negative when responses are slow, consistent with previous

findings (Pailing et al., 2000).
Discussion

EEG working-memory studies have identified numerous

relations between EEG oscillations and task manipulations. The

present work replicates and extends several of these findings, by

illustrating oscillatory patterns at different electrodes that simulta-

neously correlated with different task variables. These patterns

were especially prevalent in the theta band, where we observed

correlates of memory recognition, RT, and memory load at

different electrodes and after-probe latencies. These observations

indicate that although theta oscillations are present in widespread

cortical regions, their functional role varies throughout the

cortex—consistent with observations of multiple local cortical

theta generators (Raghavachari et al., 2006).



Fig. 5. Distinguishing oscillatory and ERP correlates of TL (bs from Eqs. (3), (4), and (5) at P3, substituting TL for Y). b plotted as 0 (green) when

corresponding P � 0.01. (A) bpow (Eq. (3)). (B) bERP (Eq. (4)). (C) bpow–bi (Eq. (5)). (D) bERP–bi (Eq. (5)).
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Our data indicate that left-parietal theta relates to memory

recognition (Fig. 2). Left-parietal theta power initially (300 ms

after probe) correlated with the degree of match between the probe

and memory contents (TLC); later (500 ms after probe), it was best

predicted by whether the probe was a target or lure (TL). We

analyzed whether this theta target– lure effect was similar to the
Fig. 6. Distinguishing oscillatory and ERP correlates of Lag (bs from Eqs. (3),

corresponding P � 0.01. (A) bpow (Eq. (3)). (B) bERP (Eq. (4)). (C) bpow–bi (Eq.
ERP target– lure effect, and found that they were not directly

related, consistent with previous reports (Klimesch et al., 2000).

ERPs result from a complex pattern of power and phase dynamics

at a range of frequencies, but our analysis was only designed to

distinguish power changes at single frequencies that affect ERP

amplitude. Thus, we cannot rule out the possibility that theta
(4), and (5) at PO7, substituting Lag for Y). b plotted as 0 (green) when

(5)). (D) bERP–bi (Eq. (5)).



Fig. 7. RTQ-grouped response-locked ERPs. Response-locked ERPs for

correct responses grouped by RTQ at electrode 107 (immediately right-

anterior to CZ). Recordings are baseline corrected to voltage 500 ms before

response.
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oscillations relate to the ERP target– lure effect in a manner that is

beyond the scope of our analysis. Nonetheless, both the ERP and

theta target– lure effects are present at left-parietal electrodes 300

ms after probe, further implicating electrical activity recorded in

this region in memory recognition.

Our observations relating left-parietal theta to memory recog-

nition should not be interpreted as evidence that left-parietal theta

is exclusive to working memory. In fact, recent work has described

a similar left-parietal theta-power increase 300–500 ms after

viewing open-class words (nouns, verbs, or adjectives) compared

to viewing closed-class words (determiners, conjunctions, or

prepositions) (Bastiaansen et al., 2005). Since these patterns have

similar spatial and temporal characteristics, it seems reasonable to

hypothesize that both patterns result from a more general

phenomenon relating left-parietal theta to memory retrieval. Other

studies observed that, in addition to theta, gamma power increased

following target stimuli, compared with lures, in long-term

recognition tasks (Gruber et al., 2004; Düzel et al., 2003). Since

our analyses did not reveal this pattern, we hypothesize that

gamma’s relation to stimulus recognition is specific to tasks with

long retention intervals.

Dual-process models of human memory generally assume the

existence of neural correlates of familiarity and recollection (Norman

and O’Reilly, 2003; Yonelinas, 2002). The neural-familiarity signal is

a graded measure of the match between a stimulus and memory

contents, whereas recollection is an all-or-none signal reflecting

retrieval of the details of a stimulus. One interpretation of our

findings suggests that left-parietal theta ¨300 ms after probe could

be a familiarity signal, because it correlated with TLC. Likewise, the

¨500-ms left-parietal TL effect could be a correlate of recollection.

Consistent with this interpretation, the oscillatory correlates of TLC

and TL have time courses similar to observed ERP correlates of

familiarity and recollection (Curran, 2000).

Previous studies demonstrated that central or frontal theta

power related both to task difficulty (Gevins et al., 1997; Jensen

and Tesche, 2002) and to response-related error processing (Luu et

al., 2004). These observations, and the present findings, are

consistent with central theta power relating to decision making.

Figs. 3A and B illustrate that central theta (¨7 Hz) power increased

after probe onset and decreased before the response. This pattern

correlated best with RTQ (negative values of bRTQ in Fig. 1H),

indicating that central theta related best to decision making rather
than to stimuli manipulation. Consistent with this pattern, the

anterior cingulate cortex, which underlies central electrodes, has

been implicated in decision making via functional imaging studies

(Botvinick et al., 2004).

Recent work found that increased theta power during incorrect

responses related to the ERP error-related negativity (ERN) pattern

(Luu et al., 2004). This pattern is consistent with theta relating to

decision difficulty, because incorrect responses are associated with

decreased confidence (and increased RTs). Since we observed that

central theta power correlated with response confidence, it is also

possible that the ERN related most directly to response confidence

(rather than to error processing). We directly studied this by

examining response-locked ERPs in correct trials (Fig. 7), and

found that voltage was most negative for slow responses,

consistent with previous findings (Pailing et al., 2000).

When we examined the relation between oscillatory power and

memory load (e.g., Fig. 4A), we found that theta power decreased

with increasing memory load: Fig. 1 shows that, at widespread

electrodes, bLL is negative at 4 Hz. This finding is opposite to the

trend suggested by a previous study that analyzed the retention

interval (Jensen and Tesche, 2002). This difference indicates that

EEG oscillations can relate differently to behavior during distinct

portions of the task. Moreover, this behavior-related power

decrease exemplifies how oscillations can relate to behavior via

both power increases, as is commonly seen in the theta band (Fig.

2), and power decreases, as is seen in the inverse relation between

alpha power and attention (Pfurtscheller et al., 1996).

One version of a recent theoretical working-memory model

suggested that the positive correlation between RT and memory

load (Sternberg, 1966) is caused by an increase in theta’s

wavelength in proportion to the number of items stored in memory

(Jensen and Lisman, 1998). Thus, this model predicts that theta’s

frequency would decrease with increasing memory load (LL). In

our analyses, this pattern would result in negative values of bLL at

the upper part of the theta frequency range (¨8 Hz) and positive

values of bLL at the lower end (¨4 Hz). Since our analyses found

negative values of bLL at 4 Hz, they do not support this model.

Although our data do not demonstrate behavior-related EEG

frequency shifts at individual electrodes, we did observe that

different frequencies within the 4�8-Hz theta band best correlated

with behavior across brain regions. Fig. 1H indicates that bRTQ was

greatest at central electrodes at ¨7 Hz; Fig. 1D shows that bTL was

greatest in left-parietal regions at ¨4 Hz. These theta-frequency

differences could be explained by regional differences in neural

structure (Buzsáki and Draguhn, 2004).

We also observed correlates of behavior in oscillations at

frequencies outside the theta band: the left-parietal Lag effect (see

Fig. 4C) is best characterized as a 2-Hz oscillatory effect but is also

visible in ERPs. This finding indicates that previous observations

of ERP serial-position effects (Golob and Starr, 2004) may also

relate to phase-locked delta activity. In the alpha band, we found

that oscillatory power ¨700 ms after probe was greatest for fast

RTs (Fig. 1), indicating that alpha power increased after subjects

had responded and were not cognitively engaged. This is consistent

with reports of alpha as a correlate of cortical idling (Pfurtscheller

et al., 1996).

Finally, we found that increased gamma power after probe was

correlated with slow RT (Fig. 3D). This relation is present

immediately after the probe’s onset, so it likely is related to attention

or task vigilance rather than to probe processing. Although recent

studies have also observed relations between gamma power and RT,
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the reported direction of this relation varied depending on whether

subjects could precisely predict stimuli onset: in studies in which

subjects could predict when the cue would appear, increased gamma

power was associated with fast responses (Gonzalez Andino et al.,

2005); if subjects could not precisely predict the probe’s onset,

increased gamma power was present in slow trials (Jokeit and

Makeig, 1994). We observed increased gamma power in trials in

which subjects responded slowly, consistent with the fact that our

probe onset was temporally jittered, preventing subjects from

anticipating its exact onset.
Conclusions

We used a multivariate statistical framework to study how EEG

oscillations related to working memory. Power of theta oscillations

simultaneously correlated with different task variables: theta at left-

parietal electrodes correlated with memory recognition, theta at

central electrodes correlated with decision making, and theta at

widespread electrodes correlated with memory load. In addition to

theta, we also observed correlates of task variables in the delta,

alpha, and gamma frequency bands. These patterns indicate that

EEG oscillations can be used to map the functional roles of

widespread brain regions. Our findings are the first to describe

distinct patterns of theta oscillations that simultaneously relate to

unique aspects of behavior. The range of patterns we observed

indicates the functional diversity of human brain oscillations, and

brings a new perspective to the debate over theta’s role.
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Buzsáki, G., 2002. Theta oscillations in the hippocampus. Neuron 33 (3),

325–340.
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