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Power functions (e.g., f(t) = at−b) describe the relationships among many variables

observed in nature. One example of this is the power law of forgetting: The decline in

memory performance with time or intervening events is well fit by a power function. This

simple functional relationship accounts for a great deal of accumulated data. In this note,

we consider a simple yet general memory model in which all items decay monotonically in

strength, but at different rates. To translate between continuous changes in strength and

actual memory for events we assume a simple strength threshold for remembering. We

prove a limit theorem for this model: as time grows large and memories decay, the empiri-

cal forgetting function approaches a power function under very general conditions. Power

forgetting emerges for almost any monotonically decreasing strength function (including

linear and exponential cases). We also illustrate by way of simulations that the power

function provides an excellent fit to the entire time-course of the forgetting function, not

just its limiting behavior.

Key Words: Power law, forgetting, memory models

1. INTRODUCTION

Ever since Ebbinghaus (1885/1913) inaugurated the scientific study of memory,
researchers have examined the manner in which memory performance declines with
time or intervening events (i.e., the forgetting function). Although it has long been
known that forgetting occurs rapidly at first and more slowly as time goes on, it
was not until quite recently that the mathematical form of the forgetting function
has been precisely established. Wixted and colleagues (Wixted, 1990; Wixted &
Ebbesen, 1991, 1997) have demonstrated that the form of forgetting, across various
materials and memory tests, is characterized mathematically by a power function.
Rubin & Wenzel (1996) compared over a hundred forgetting functions and found
that the power function was one of only four that provided a good fit to a wide
range of forgetting data. That is, accuracy in a memory task at time t is given by
y = at−b, where a and b are positive real numbers. This invariance in the form of
forgetting suggests a basic law of human memory.
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If the nature of the functions that characterize learning and forgetting can teach
us about their underlying processes, we ought to take any evidence either for or
against a particular function very seriously. For instance, if a model assumes that
memory trace strength decreases in an exponential fashion, a seemingly obvious
implication is that such a model should be rejected. How could exponentially
decreasing trace strength be reconciled with power-law forgetting?

Exponential strength decay is a natural assumption for memory models. If you
consider a model like TODAM (Murdock, 1982, 1997), forgetting arises due to a
forgetting parameter, α, and also because the variance of the memory increases
with list length (but see Murdock & Kahana, 1993,b). In TODAM, the storage
equation for item information (Murdock & Lamon, 1988) is given by:

m(t) = αm(t − 1) + pf(t)

Because the memory is premultiplied by α as each new item is learned, recognition
performance (as measured by d′) should decrease as a function of α to the power
of lag (or time).

Exponential decay of trace strength or cue-target strength is common in other
models as well. Mensink & Raaijmakers (1988) have a forgetting process based
on contextual drift that is nearly exponential. The same is true of other models
of contextual drift (Murdock, 1997; Howard & Kahana, 2002). Bower’s (1967)
multicomponent model also assumes exponential strength-decay of the individual
components.

Although exponential decay in trace strength is a common assumption of mem-
ory models, the data strongly suggest that forgetting obeys a power law. Such
power laws are not unique to forgetting. Learning is also well described by a power
law. The reduction in reaction times that comes with practice is a power function
of the number of training trials (see Anderson, 1995, for a review). Indeed, power
laws describe a great many natural phenomena ranging from sensory scaling to the
distribution of city sizes. What can we learn from the power-law of forgetting?
Does a power-law of forgetting imply that models based on exponential strength
decay mechanisms must be rejected?

1.1. Interpretive Problems

Using a computational analysis, Anderson and Tweney 1997 showed that arith-
metic averaging of exponential functions can give rise to power functions. They also
reported that they were unable to find a general analytic solution to the problem
of aggregated exponentials. Indeed, this problem may not have a solution without
adding some simplifying assumptions. Anderson & Tweney (1997) concluded that
the power law of forgetting may be an artifact of arithmetic averaging (see also
Anderson & Tweney, 1998)

Responding to the Anderson & Tweney (1997) critique of power functions,
Wixted & Ebbesen (1997) showed that even with geometric averaging of individual
subjects’ data, a power function still fits the data better than an exponential func-
tion. Of course, it is possible that the problem is not at the level of subjects, but
rather at the level of items, or even subject-item interactions. Wixted & Ebbesen
(1997) acknowledge the possibility that exponential forgetting with variability in
forgetting rates across items could give rise to aggregate power functions of forget-
ting.
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Wickens (1998) pursued this point, showing that very different theories of forget-
ting can give rise to very similar-looking retention functions. In particular, starting
with the assumption that individual items are forgotten exponentially, Wickens
(1998) showed that models based on (1) heterogeneity of forgetting rates, (2) con-
solidation of traces over time, and (3) competition among traces for survival, under
certain distributional assumptions, can give rise to a Pareto II distribution of item
survival. For large t, this description of forgetting simplifies to the power law that
has been shown to well describe the empirical data.

Although power-functions provide a good fit to forgetting data for ranges of the
forgetting function, there is no sense in which a complete forgetting function, with
performance measured from t = 0 to t = ∞, could be well fit by a power function.
This is because a power function implies that the measure of performance tends
to infinity as t tends to zero. With percent correct as the dependent measure,
performance at t = 0 will tend to 1.0, thus “rejecting” a power function.

In the work presented here, we concentrate on the asympototic properties of
forgetting — the behavior of the forgetting function as t → ∞. In particular we
obtain analytic results that show that ast → ∞, performance is a power function
of t for a simple but general class of forgetting models. Simulations support these
analytic results, and show that the emergence of power forgetting appears quickly
for many different parameter values of the underlying models.

1.2. Power forgetting in a strength-decay to threshold memory model

Memory researchers are interested in knowing the form of changes in memory
strength over time — not changes in memory performance over time. But, we
can’t measure memory strength directly; rather, we measure performance. In most
memory tasks, performance is based on a summary statistic over discrete events
(success or failure in recognizing or recalling an item at a given delay between study
and test).

Consider the following very simple, yet general, memory model. Items stored in
memory have a strength value, S. In the absence of reinforcement but the presence
of intervening activity, the strength of each item decays monotonically according
to some strength decay function.

Assuming that the strength decays exponentially: Si(t) = αSi(t − 1) and 0 <
α < 1, therefore,

Si(t) = Si(t0)α
t (1)

This type of difference equation is characteristic of a number of memory models
(e.g., Murdock, 1982, 1997; Mensink & Raaijmakers, 1988). But the form of the
forgetting function turns out not to be crucial. The important consideration is
that when an item’s strength falls below a fixed threshold, k, the item is forgotten.
So long as the strength is greater than k, the item is remembered. We also must
assume that strength decays at different rates for different items (cf. Anderson &
Tweney, 1997; Wickens, 1998). The basic features of the model are illustrated for
an exponential strength decay function in Figure 1.

Here we show that under these conditions, the average forgetting function ap-
proaches a power function as t grows large. Before proving a limit theorem under
fairly general conditions, we present proofs for two special cases: linear trace decay
and exponential trace decay. Simulation results for the case of exponential strength
decay show that power forgetting emerges quite rapidly and is not just a property
of the tail of the forgetting function (i.e., when accuracy approaches zero at very
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FIG. 1 A simple model of recall. Three curves illustrate the reduction in mem-
ory strength for three different items (A, B, and C). Items are assumed to decay
at different rates and with different initial strengths. The gray bar indicates the
strength threshold for correct recall or recognition. Items are forgotten when their
strength falls below the threshold. Three arrows indicate the points in time when
items A, B, and C are forgotten. Before t1 all three items are remembered, two
items are remembered until t2, one item is remembered until t3, and after t3 none
of the three items are remembered.
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large t). In the special cases we assume, for convenience, that strength decay rates
are normally distributed subject to the constraint that all items do exhibit at least
some decay (we use truncated Gaussians). In the general derivation, we show that
this assumption is not at all crucial to the proof of the limit theorem.

1.3. Special Case 1: Linear Strength Decay

Consider a linear strength-decay function with independent variable coefficients:
Si(t) = ai − bit with ai ∼ N(µa, σa), bi ∼ N(µb, σb), and µa > 0 , µb > 0. Next,
define a counter of retrievable memories, ri(t), such that:

ri(t) =

{

1, Si(t) > k
0, Si(t) ≤ k

This is a key feature of the model. Items are retrieved if strength is greater
than k; otherwise, they are forgotten.

Observe that:
∑N

i=1 ri(t)

N
→ E (ri(t)) , as N → ∞ by the Law of Large Num-

bers, because the ri(t) are identically distributed, independent random variables.
The expectation of ri(t), E (ri(t)) is our forgetting function, averaged across many
discrete items. Computing this expectation will give us the form of the forgetting
function under the conditions outlined above. To compute E

(

ri(t)
)

we proceed as
follows:

E (ri(t)) = 1 · P (ri(t) = 1) + 0 · P (ri(t) = 0)

= P (ri(t) = 1)

= P

(

a1 − k

b1
> t

)

=

∫ ∞

y≥0

∫ ∞

x=ty

exp
(

−(x−(µa−k))2

2σ2
a

)

cσa

·
exp

(

−(y−µb))
2

2σ2
b

)

σb

dxdy,

where we let x = a1 − k and y = b1, and have constructed Gaussians about these
points. Note that we are using a truncated Gaussian about bi, if bi ≥ 0, as seen
by the lower limit of the outer integral (y ≥ 0), and c = F (−µb

σb
)F (−µa

σa
), with F

defined below.
Now we set γ = x−(µa−k)

σa
and η = y−µb

σb
to simplify our computations. To make

a change of variables, however, we must modify the limits of integration. We see
that ty = γ = k−µa

σa
+ ty

σa
where y = ησb + µb. In which case we can write:

E (r1(t)) =

∫ ∞

−µb
σb

∫ ∞

γ=(η
σb
σa

+
µb
σa

)t+ k−µ
σa

exp
(

−(γ2+η2)
2

)

c
dγdη

=

∫ ∞

−µb
σb

1

c
F

(

(η
σb

σa

+
µb

σa

)t +
k − µa

σa

)

exp

(−η2

2

)

dη

where, F (z) ≡
∫ ∞

z

exp

(−α2

2

)

dα =
√

2π (1 − c.d.f. gaussian(z))

Thus, F (−∞) = 1, and F (z) ≤ exp
(

−z2

2

)

for large z > 0, which is easily

integrable. Now setting η′ = (η σb

σa
+ µb

σa
)t + k−µa

σa
we find that:
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E (r1(t)) =
1

t( σb

σa
)

∫ ∞

k−µa
σa

1

c
F (η′) exp





−( η′

t
σb
σa

+ µa−k
tσb

− µb

σb
)2

2



 dη′

=
exp

(

− µ2
b

2σ2
b

)

t( σb

σa
)

∫ ∞

k−µa
σa

1

c
F (η′)dη′ → c′

t
, as t → ∞,

where, c′ =
exp

(

− µ2
b

2σ2
b

)

c σb

σa

∫ ∞

k−µa
σa

F (η′)dη′.

1.4. Special Case 2: Exponential Trace Decay

Following the same construction as in the linear case, we define a counter of
retrievable memories:

ri(t) =

{

1, aie
−bit > k

0, otherwise

Further, let x = ai and y = bi. Then the probability of retrieving a memory is
given by:

E (ri(t)) = P (ri(t) = 1) = P (ai > kebit) =

∫ ∞

0

∫ ∞

x=keyt

e− (x−µa)2

2σ2
a

e− (y−µb)
2

2σ2
b

cσaσb

dxdy

where, c = F (−µa

σa
)F (−µb

σb
). Setting γ = x−µa

σa
and η = y−µb

σb
then gives

∫ ∞

−
µb
σb

∫ ∞

γ=(c1etc3+c2)

e−
(γ2+µ2)

2

c
dγdη

where γ = keyt−µa

σa
and y = ησb + µb, and where c1 = k

σa
, c2 = −µa

σa
, and c3 =

ησb + µb. We then obtain

∫ ∞

−
µb
σb

1

c
F (c1e

tc3 + c2)e
−η2

2 dη,

where F (·) is as defined previously. Setting tc3 = t(ησb + µb) = η′ gives

1

tσb

∫ ∞

0

1

c
F (c1e

η′

+ c2)e
−(

η′

tσb
−

µb
σb

)2

2 dη′.

Thus, as t → ∞,

E (ri(t)) =
e
−

µ2
b

2σ2
b

tσb

∫ ∞

0

1

c
F (c1e

η′

+ c2)dη′ → c′

t

where, c′ =
e
−

µ2
b

2σ2
b

cσb

∫ ∞

0

F (c1e
η′

+ c2)dη′.
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1.5. Discussion of the special cases:

In the two special cases presented above, we saw that as t → ∞ a threshold
model in which item strength decays either linearly or exponentially (with time)
yields a hyperbolic relationship between recall probability and time. Although this
is a special case of the power law of forgetting, the exponents for the limiting case
of t → ∞ are exactly 1, whereas in actual experiments, the exponent that fits the
full range of participants’ performance is often significantly less than one.

To see that the model does actually produce exponents that are less than
one consider the following analysis. Recall that the forgetting function, given by
E (ri(t)), can be rewritten as follows:

E (ri(t)) =
c1

t

∫ ∞

c2

F(η′) exp

(

−c3
η′2

t
+ c4

η′

t

)

dη′

In the equation above, c1, c2, c3 and c4 are all constants. If we use the analytic
series, ex =

∑∞

n=0 xn/n!, for x ∈ C, then we can rewrite the above expression as:

E (ri(t)) =
c1

t

∫ ∞

c2

F(η′)

(

1 +

∞
∑

i=1

ai(η
′)

ti

)

dη′

=
c1

t

[

∫ ∞

c2

F(η′)dη′ +

∞
∑

i=1

Ai

ti

]

Next, setting c′ = c1A0, and bi = Ai/A0, we have:

E (ri(t)) =
c′

t

(

1 +
b1

t
+

b2

t2
+ · · ·

)

If we define

θ(t) =
ln
(

1 + b1
t

+ b2
t2

+ · · ·
)

ln(t)

then we have

E (ri(t)) =
c′

t1−θ(t)

Because θ(t) < 1 and θ(t) → 0 as t → ∞, we can see how the exponent of the
power function varies with t in a systematic manner. For smaller values of t, the
exponent will be less than one, but it will approach 1 as t grows large.

The analysis presented above shows that the simple decay-to-threshold model
gives rise to power forgetting even when the strength decay functions are linear
or exponential. In the next section we consider the centrality of our assumptions
in producing the “power-law” behavior at large t. In particular, we generalize our
analytic results to a very a broad class of strength decay functions and to non-
parametric variability in the decay parameters.

1.6. General Derivation

Consider a strength-decay function of a general form: Si(t) = H(a
(i)
1 , a

(i)
2 , ..., a

(i)
n , t),

and assume the following conditions:
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1. H = H(a1, a2e2(t), a3e3(t), ..., anen(t)) with

E(t) :=
n
∏

i=2

ei(t) = tr with ei(t) → ∞ as t → ∞

Remark 1: This form of the strength decay function is very general. Consider
the case of the exponential decay common to many memory models, Si(t) =
ae−bt. In this case, a1 = a, a2 = b, and e2(t) = t. Similarly, the form of H
also accommodates linear strength decay.

2. H is globally monotonic increasing in its first argument a
(i)
1 for all values of

the other arguments, monotonic decreasing in t, and smooth (l continuous
derivatives) in all arguments.

3. a
(i)
j has distribution function fj(a

(i)
j ) with fj independent of i, just depending

on j, such that fj(x) = 0 for x < 0,

4. all random variables are independent.

Remark 2. Condition 2 implies that H ≥ k ⇐⇒ a
(i)
1 ≥ g(a

(i)
2 e2(t), ..., a

(i)
n en(t), k),

and H ≥ k ⇐⇒ φ(a
(i)
1 , a

(i)
2 , ..., a

(i)
n , k) ≥ t for some smooth function (l − 1 contin-

uous derivatives) in all arguments by the global monotonicity and implicit differ-
entiation.

Set F1(x) =
∫∞

x
f1(y)dy → 0 as x → ∞. Define a counter of retrievable memo-

ries, ri(t), such that:

ri(t) =

{

1, Si(t) > k
0, Si(t) ≤ k

Again, this is a key feature of the model. Items are retrieved if strength is greater
than k; otherwise, they are forgotten. As before, observe that (1/N)

∑N
i=1 ri(t) →

E (ri(t)) , as N → ∞, by the Law of Large Numbers, because the ri(t) are identically
distributed, independent random variables.

The expectation of ri(t) is our forgetting function, averaged across many discrete
items. Computing this expectation will give us the form of the forgetting function
under the general conditions outlined above. To compute E (ri(t)) we proceed as
follows:

E (ri(t)) = 1 · P (ri(t) = 1) + 0 · P (ri(t) = 0)

= P (ri(t) = 1)

= P (Si(t) ≥ k)

= P (φ(a1, a2, ..., an, k) ≥ t) (∗)
= 1 − Fφ(t)

where we have set all ai
l = al, and where Fφ is a c.d.f. of the random variable

φ(a1, a2, ..., an). Note that we have used in the above that

Si(t) ≥ k ⇐⇒ φ(a1, a2, ..., an, k) ≥ t

for some function φ by Remark 2.
Analytic solutions for the special cases of linear and exponential forgetting func-

tions (shown earlier) suggested that power forgetting emerges as a general property
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of this model. Here we approach the general solution by asking the prospective
question: When does

Fφ(t) ' 1 − c′

tr
, r > 0,

for t large? In other words, what are the conditions that would result in power-law
forgetting?

This requires that the density distribution function

fφ(t) = F
′

φ(t) ∼ c′r

tr+1
.

This is really a condition on the function φ(a1, a2, ..., an, k).
Further analysis proceeds as follows: Using (*) and Remark 2 we compute in

general that:

1 − Fφ(t) =

∫ ∞

0

∫ ∞

0

...

(

∫

z1≥g(z2e2(t),...,znen(t),k)

f1(z1)dz1

)

n
∏

2

fi(zi)dzi.

=

∫ ∞

0

∫ ∞

0

...

∫ ∞

0

F1 (g(z2e2(t), ..., znen(t)))

n
∏

2

fi(zi)dzi.

Setting zlel(t) = z′l gives

1 − Fφ(t) =
1

E(t)

∫ ∞

0

∫ ∞

0

...

∫ ∞

0

F1

(

g(z′2, ..., z
′
l)
)

n
∏

l=2

fl

(

z′l
el(t)

)

dz′2...dz′n :=
q(t)

E(t)
,

Using el(t) → ∞ as t → ∞ (so as t → ∞, fl

(

z′

l

el(t)

)

→ fl(0
+)), and using Les-

besgue’s dominated convergence theorem and Assumption 3 below, we see that as
t → ∞, 1 − Fφ(t) approaches:

(∏n
2 fi(0

+)

E(t)

)∫ ∞

0

...

∫ ∞

0

F1

(

g(z′2, ..., z
′
l)
)

dz′2dz′3...dz′n :=
q(∞)

E(t)
:= q(∞)t−r

by our hypothesis, with,

q(∞) :=

n
∏

2

fi(0
+)

∫ ∞

0

...

∫ ∞

0

F1 (g(z′2, ..., z
′
n)) dz′2...dz′n.

In order to obtain the limit above, we assumed that

∫ ∞

0

...

∫ ∞

0

F1

(

g(z′2, ..., z
′
n)
)

dz′2...dz′n < ∞ (2)

and the mild assumption that there exists an M such that |fi(x)| ≤ M for all i and
x (so that we can use dominated convergence).

The rate of convergence of q(t) → q(∞) is controlled by the decay rate of
F1

(

g(z′)
)

as z → ∞. For very small t, it is likely that the strengths of the individual
items are all > k. This would mean that nothing has been forgotten yet. As t grows,
and strengths begin to drop below the threshold, k, power forgetting may appear
quite quickly.
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FIG. 2 Simulation example #1: Forgetting function for an exponential strength
decay model. Left panel plots data in linear coordinates; Right panel plots data
in log-log coordinates. The following parameter values were used: k = 0.001,
a ∼ N(2.5, 1.0), b ∼ N(.003, .004). For this simulation, a and b are truncated
normals, with 500 items being forgotten at different rates. Exponential and power
functions were fit to data in the range of t = 1000 to 5000. The best fitting power
function is given by P(recall)= 77t−.64 with r2 = 0.999. The best fitting exponential
function is given by P(recall)= 1.03e−.0003t with r2 = 0.95.
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FIG. 3 Simulation example #2: Forgetting function for an exponential strength
decay model. Left panel plots data in linear coordinates; Right panel plots data
in log-log coordinates. The following parameter values were used: k = 0.2,
a ∼ N(3.5, 0.5), b ∼ f(.06) where f denotes an exponential distribution. For this
simulation, 12,000 items are forgotten at different rates. Exponential and power
functions were fit to data in the range of t = 80 to 1000. The best fitting power
function is given by P(recall)= 21t−.87 with r2 = 0.999. The best fitting exponen-
tial function is given by P(recall)= 0.44e−.003t with r2 = 0.92. Identical fits were
obtained with the following parameter values: k = 1, b ∼ f(.025).
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FIG. 4 Simulation example #3: Forgetting function for an exponential strength
decay model. Left panel plots data in linear coordinates; Right panel plots data
in log-log coordinates. The following parameter values were used: k = 0.02,
a ∼ N(1.0, 0.2), b ∼ f(0.06) where f denotes an exponential distribution. For
this simulation, 10,000 items are forgotten at different rates. Exponential and
power functions were fit to data in the range of t = 35 to 1000. The best fitting
power function is given by P(recall)= 14.4t−.91 with r2 = 0.995. The best fitting
exponential function is given by P(recall)= 0.47e−.006t with r2 = 0.93. Consistent
with the theoretical analysis, the power function that best fit data in the range of
t = 150 to 1000 was given by P(recall)= 29.3t−1.03 with r2 = 1.000
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1.7. Simulations

To examine how rapidly power forgetting emerges in our model we simulated the
special case of exponential trace decay. In particular, r(t) = E(aie

−bit > k), where
a and b are random variables. In Simulation 1, a and b were truncated Gaussians
(ai > 0 and bi > 0). This follows the proof of the special cases. In Simulations
2 and 3, a and b were drawn from an exponential distribution. This avoids the
problem of having to truncate negative values. In addition to the parameters that
determine the distributions of a and b, the model has one additional parameter:
the forgetting threshold, k.

Figures 2-4 show three simulation runs with different parameter values. For
each simulation we have plotted the models’ predictions in both linear and log-log
coordinates (a power function appears as a straight line in a log-log plot). The
parameter values and r2s are given in the figure legends.

These simulations show that a simple decay-to-threshold model with exponen-
tially decaying memories can produce aggregate power functions. These results are
typical of many simulations run with other parameter values. Although the power
function provides an excellent fit once performance drops significantly below ceil-
ing, the power function does not provide an adequate fit to the early portion of our
model’s forgetting functions1. Like experimental subjects, our model dictates that
performance in the first few moments after learning remains at ceiling. Because
at−b → ∞ as t → 0 the power function is unable to fit this aspect of either the
human data or the model results. It is only once forgetting is well underway that
the power form emerges. This is consistent with our analytic results showing that
power forgetting emerges as t grows large.

The simulations described above all assumed exponential strength decay of in-
dividual memories. Under these assumptions, the exponent of the power function
that best fits the data should approach 1 as t → ∞. Figure 5 replots the simula-
tion results shown in Figure 4 and shows separate power-function fits to different
ranges of the forgetting function. Consistent with the analytic results, the best fit-
ting exponents decrease monotonically to -1 as we fit later regions of the forgetting
curve.

Although our model assumes a constant threshold, it is mathematically indis-
tinguishable from a model that assumes different thresholds for different items.
To eliminate a free parameter, we allowed the variability in the y-intercept of the
strength decay function forgetting function to subsume variability in the threshold
(across items, but not time).

1.8. Conclusions

We have shown a striking example of how tricky it is to infer psychological
process from the form of the retention function. Moreover, our analytic results
suggest that there is something special about the power function as a description
of the forgetting process. It may be that power functions arise from aggregate
forgetting data under fairly general conditions. If this is true, then the challenge
for memory theory is to explain violations of the power law of retention. One
limitation of our analysis is that it does not readily handle RT data (this is because

1Consider the simulation shown in Figure 3. For these parameters, performance is at or near
ceiling for small t. Although a power function accounts for nearly 100% of the variance when fit
to the data from t = 1000 to t = 5000, the same power function does not provide a good fit when
the data from t = 0 to t = 1000 are included.
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we assume a threshold that translates memory strength into binary responses). For
learning data, the decrease in RT with practice obeys a power law (see Anderson,
1995 for a review). Regarding forgetting data, the increase in correct recognition
RT with study-test lag is often linear (see Murdock, 1974, for a review) and the
increase in inter-response times with output position is typically exponential (e.g.,
Murdock & Okada, 1970; Rohrer & Wixted, 1994; Wixted & Ebbesen, 1997). These
findings are not addressed by our analysis.

In this note, we have shown how a simple model that assumes monotonic
strength decay at the level of individual items coupled with a discrete retrieval
threshold predicts aggregate power forgetting functions. This exploration illustrates
some of the dangers inherent in inferring mental organization from the mathemati-
cal form of the behavioral data. The important question for theories of memory to
address is how forgetting is affected by experimental manipulations and not what
mathematical form the forgetting process assumes.
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