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10
Response Time versus Accuracy in Human
Memory

Michael Kahana and Geoffrey Loftus

One of the first decisions confronting a behavioral scientist is the choice
of a measurement instrument that appropriately captures some relevant
aspect of human behavior. Consider a typical memory experiment. A sub-
ject is presented with a list of words to remember. Immediately after
studying the list, a word is presented, and the subject’s task is to judge,
as quickly and accurately as possible, whether the word was shown in the
studied list. Data in this experiment consist of both the subject’s response
(‘‘yes’’ or ‘‘no’’) and the time it took the subject to make the given re-
sponse (called response latency, response time, or reaction time; hereafter,
RT). Many scientists seem to religiously adhere to the study of either
response accuracy or response time; rarely are both investigated simulta-
neously in a given experimental design. Is this a mistake, or are accuracy
and response time perhaps just two sides of the same coin—two measures
that can be used interchangeably, depending on which is more convenient
in a given experimental design? The goal of this chapter is to attempt to
answer this question through a selected review and analysis of some of
the basic experimental results and theoretical issues in the area of human
memory.

Although interest in RTs has been around for a long time (e.g., Don-
ders, 1868/1969; Helmholtz, 1850), until recently research in human
memory has been almost exclusively concerned with measures of re-
sponse accuracy. In a survey of memory texts published during the 1970s
(Baddeley, 1976; Crowder, 1976; Hall, 1971; Kausler, 1974; Murdock,
1974), fewer than 4% of the experiments cited reported data on RTs.
Beginning in the late 1960s, however, a whole host of new problems
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emerged that required the use of RT as the measure of interest: semantic-
priming effects (e.g., Meyer & Schvaneveldt, 1971); perceptual priming
(Neely, 1981); implicit serial, or sequence, learning (Jime

´
nez, Me

´
ndez, &

Cleeremans, 1996; Reber, 1967); and short-term memory (Sternberg,
1966)—each of which will be addressed in this chapter. However, it was
not until the mid-1970s, when real-time personal computers became stan-
dard tools in the psychological laboratory, that the study of RTs became
standard in the field. A recent text on human memory (Anderson, 1995)
contains a healthy mix of accuracy and RT data.

Not only is there now a heightened interest in RT within cognitive
research, but new experimental techniques that combine measurement of
processing time and response accuracy have emerged.1 Later in this chap-
ter, we examine some of these techniques in detail. In discussing the rela-
tion between RT and accuracy in human cognition, we will focus
primarily on data and theory within the domain of human memory.

Accuracy and Interresponse Times in Free Recall

A first analysis of memory tasks reveals that making a task harder in-
creases error rates and RTs. As a case study, consider the correlation
between measures of accuracy and measures of RT in one of the classic
verbal memory tasks—free recall. In free recall, subjects are presented,
one by one, with a set of to-be-remembered items and are then asked to
recall as many items as they can remember in any order. The task is ‘‘free’’
because unlike most other memory tasks, the experimenter exerts mini-
mal control over the retrieval process; all cues other than the general cue
to recall the list items are internally generated by the subject.

The free recall task is deceptively simple. The experimenter asks the
subject a very simple question, but the subject is free to do a great many
things. Consider first the nature of the responses. How many list items
did the subject recall? In what order were the items recalled? Were any
nonlist items recalled? What was the relation between these items and
the items in the studied list? How much time elapsed between successive
responses? Do these interresponse times vary as a function of the number
of items recalled or the length of the list? These questions just begin to
point out the wealth of data obtained using this task.
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An initial examination of recall accuracy reveals several regularities.
Early and late list items are remembered better than items from the middle
of the list. The advantage for the first and last few items are referred to as
a primacy effect and a recency effect, respectively. The curve that describes
the relation between the position of the items in the list and the probability
of recall is termed a serial position curve. These results are remarkably
stable across subjects, stimulus materials, and many incidental characteris-
tics of the experimental design (Greene, 1992; Murdock, 1962).2

It is not sufficient to merely describe these data; the goal of cognitive
science is to characterize the memory processes that produce the observed
results. Much research has been devoted to understanding the process of
free recall, and one successful model of this task is the Search of Associa-
tive Memory (SAM) model (Raaijmakers & Shiffrin, 1980, 1981; Shif-
frin & Raaijmakers, 1992). A central notion in memory research, which
is captured in SAM, is that items, processed sequentially or in a common
temporal context, become associated or linked with one another. In terms
of the data, an association between two items, A and B, simply means
that the likelihood of recalling B is increased in the presence of A (either
as an externally or internally provided cue). Is this true in our free recall
task? Kahana (1996) reanalyzed data from a number of free recall studies
and found that after recall of a given list item, the probability of recalling
one of its neighbors (in terms of its position in the studied list) is greatly
enhanced. A conditional response probability (CRP) function relates the
probability of recalling a given item to its distance (in the study list) from
the last item recalled. Figure 10.1 (left panel) shows the CRP function
for data obtained by Murdock and Okada (1970).

Two aspects of the CRP functions are consistently obtained in studies
of free recall: contiguity and asymmetry. Contiguity refers to the finding
that items tend to be recalled after other items that were studied in adja-
cent list positions. For example, item 6 is more likely to be recalled imme-
diately after item 5 than immediately after item 3. Asymmetry refers to
the finding that among successively recalled items that were adjacent in
the study list, forward transitions (item 5 then item 6) are about twice
as likely as backward transitions (item 6 then item 5).

So far, we have just considered accuracy. What can be said of the inter-
response times (IRTs) between successively recalled items? Like CRP
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Figure 10.1
Conditional response probability curve (left panel) and conditional response la-
tency curve (right panel) for Murdock & Okada’s (1970) study of free recall. Log
interresponse time (IRT) is computed as ln (1 1 IRT ). Error bars reflect 95%
confidence intervals around each mean. Confidence intervals were calculated us-
ing the Loftus & Masson (1994, appendix B) procedure for within-subject
designs.

curves, conditional response latency (CRL) functions relate IRTs between
successively recalled items to their proximity in the original study list.
CRL data from Murdock and Okada (1970) are shown in figure 10.1
(right panel). IRTs are short when neighboring list items are recalled suc-
cessively. IRTs increase as the separation between the items’ positions in
the study list increases.

The IRT functions mimic the basic result portrayed in the CRP func-
tions—namely, the more likely the transition, the faster the transition. It
is tempting to say that both CRP and CRL functions reflect the operation
of a single latent construct—associative strength.3 Nearby items are more
strongly associated with each other than are distant items. The stronger
the association, the higher the probability and the shorter the IRT be-
tween successively recalled items. This is one version of a strength theory
of memory—accuracy and IRTs are just two measures of the strength of
information stored in memory.

When average accuracy and RT data show similar patterns, we are
tempted to hypothesize that these commonalities are indicative of a single
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underlying process. However, this is not necessarily the case. To take a
common example, height and weight show highly similar patterns and
yet it is unlikely that they reflect a single underlying variable. Different
eating behaviors can affect weight without having any effect on height.

Semantic Clustering
Preexperimental semantic relations among list items also exert a powerful
influence on recall order and on recall accuracy.4 This is often investigated
using a categorized free-recall task. Subjects study a list of words drawn
from a number of different categories (e.g., airplane, ruby, dog, celery,
diamond, car, truck, elephant, tomato, mule, cabbage, boat). These
words are presented in a random order, and subjects are asked to recall
the items in any order they like (standard free-recall instructions).
The relevant data are the order of recall and the IRTs between suc-
cessively recalled items. When subjects recall a categorized word list,
items belonging to the same category are usually recalled successively
and in rapid succession (short within-category IRTs). These categorically
related word clusters are separated by long between-category IRTs
(Patterson, Meltzer, & Mandler, 1970; Pollio, Kasschau, & DeNise,
1968; Pollio, Richards & Lucas, 1969; Wingfield, Lindfield, & Kahana,
1998).

Although there is substantial data on free recall of categorized lists,
there is a paucity of data on the effects of interitem similarity on free
recall of random word lists. Unfortunately, studies that have carefully
measured interitem similarity and output order in free recall (e.g., Cooke,
Durso, & Schvaneveldt, 1986; Romney, Brewer, & Batchelder, 1993)
have not simultaneously collected data on IRTs.

Like the data on conditional response probability and latency, semantic
cluster effects can be interpreted as reflecting differences in associative
strength. Items that are similar in meaning, or members of a common
category, are more strongly associated. These items will tend to be re-
called together, and the IRTs will be very short. To get from recalling
items within a given category to recalling the items in the next category
requires subjects to rely on the weaker associations that link all of the
experimental items together—associations that stem from the common
experimental context in which the items were studied.
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Exponential Increase in IRTs
Another feature of the categorized recall is that within-category and be-
tween-category IRTs start out fast and slow down with each transition.
This finding mirrors a basic result observed in free recall of random word
lists: IRTs increase exponentially with output position. Figure 10.2 shows
the increase in IRTs with output position reported by Murdock and
Okada (1970). Rohrer and Wixted (1994) have shown that this finding
holds up under variations in list length, presentation rate (of the list
items), and a number of other variables.

What causes this increase in IRTs? According to strength theory, items
with the strongest representations are recalled first and fastest. The re-
maining items, being necessarily weaker, take longer to recall, thus pro-
ducing the accelerating interresponse times with output position. Note

Figure 10.2
This figure shows data from Murdock & Okada (1970) illustrating the exponen-
tial increase in IRTs with output position. Subjects in this experiment studied lists
of 20 common words presented visually. Vocal responses were tape recorded and
IRTs were measured. Each of the six curves in this graph represents a different
total number of words recalled (4–9).
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that this view does not assume that recalling some items has an effect on
recall of subsequent items.

A more cognitively oriented model might propose that another process
causes the IRTs to increase. One such model, the random search-with-
replacement model, has been advocated by Rohrer and Wixted (1994;
see also Wixted & Rohrer, 1994). In its simplest form, this is a pure
retrieval model. According to this account, recall involves two stages.
First, subjects search through recently activated items in memory (termed
the search set) and sample an item for possible recall. If the item has
already been recalled, it is rejected. If it has not already been recalled,
the item is recalled. Assuming that it takes time to sample each item, as
the ratio of recalled to non-recalled items increases in the search set, the
time to recall the remaining items will increase as a consequence of the
resampling and rejection of items already recalled. The process of random
search with replacement mathematically predicts exponential growth of
IRTs (McGill, 1963).

Wixted and Rohrer’s (1996) random search with replacement account
of IRTs in free recall can be seen as a specific instantiation of the general
notion of output interference: that the act of recalling list items impairs
access to other list items (cf. Tulving & Arbuckle, 1963). Such interfer-
ence could be due to the resampling of the recalled items, or to a direct
effect of the recalled list items on the accessibility of the not-yet-recalled
memories.

Rohrer and Wixted take the generality of the exponential growth of
IRTs in free recall as support for the notion of random search with re-
placement. Although they acknowledge that retrieval in free recall is in-
fluenced by many factors not captured in the oversimplistic random
search model, they believe that a process akin to resampling is the likely
cause of the rapid growth in IRTs with output position. This view is very
different from strength theory in that random search with replacement
argues that changes in accuracy and RT may be caused by primarily dif-
ferent, though interdependent, memory processes. Nevertheless, without
independent evidence for the role of resampling in free recall, it is hard
to reject the position that accuracy and RT in free recall are simply two
sides of the same memory-strength coin.
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Analysis of Memory under Conditions of High Accuracy

We began this chapter by raising the question of whether RT and accu-
racy are two sides of the same coin. If they are, why not let those who
study accuracy live on in blissful ignorance of those who study RT, and
vice versa? One reason not to do this revolves around the investigation
of well-learned tasks such as reading, speech, naming objects, or per-
forming a practiced motor sequence. In these tasks, people rarely make
errors, yet speed may be of the essence. Therefore, to study tasks that are
performed essentially without errors, we must consider RTs.

It is probably fair to say that almost all RT research is concerned with
tasks where error rates are negligible. Entire areas of cognitive science
rely on RTs as their exclusive source of data. For example, one major area
of memory research is concerned with the structure of preexperimental
semantic representations. These researchers use a variety of techniques
including lexical decision tasks (LDT; i.e., deciding whether a letter
string, such as VOLVAP, is a word) and sentence verification tasks (an-
swering yes or no to questions such as ‘‘Is a canary a bird?’’). RT data
from these tasks provide insights into mental processes without making
reference to response accuracy.

Even in the case of memory for newly acquired information, there are
situations in which performance is relatively error free. Consider the
learning of words in a foreign language. Initially subjects will make many
errors, but after sufficient repetition, errors will be negligible. Consider-
able research has shown that RTs speed up dramatically even after accu-
racy reaches 100%. The reduction in RT with practice is characterized
by what is called a power law (Newell & Rosenbloom, 1981). In almost
any cognitive task, RT varies with practice according to an equation of
the form

RT 5 aP2b (10.1)

where P is the number of practice trials, and a and b are positive constants
that depend on the details of the material, the kind of practice, and the
type of learning task. Such regularity summarizes a great deal of data
across a variety of domains of cognition and serves as a benchmark that
theories must meet.
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A nice illustration of the power law can be found in a study by Woltz,
Bell, Kyllonen, and Gardner (1996, experiment 3). Woltz et al. examined
the contributions of instance memory and rule memory to the acquisition
of a cognitive task. Subjects were given four-digit strings that could be
transformed into a single digit by the sequential application of some com-
bination of different rules. Each rule transforms two adjacent digits to a
single digit (for example, if two adjacent digits are successive they are
transformed into the next item in the sequence: 56 becomes 7; 65 becomes
4). Figure 10.3 shows RT and accuracy as a function of training. Over
the two training blocks, RT decreased dramatically and in accord with the
power law. Accuracy, on the other hand, remained essentially constant.

Figure 10.3
Accuracy and latency data in a digit-recoding task (Woltz, Bell, Kyllonen, &
Gardner, 1996, experiment 3). The smooth line through the latency data repre-
sents the best-fitting power function. These data illustrate what is often called
the power law of learning.
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With practice, subjects got faster at transforming the four-digit strings
into single digits. Is this because they were better at using the rules or
because they had memory for instances of digit pairs, triples, or quads
that they could simply recall? In a final phase of the experiment, subjects
were given three types of multidigit strings to recode: strings that were
identical with those recoded (i.e., transformed into a single digit) in the
earlier training phases (old strings/old rules), new strings based on previ-
ously practiced recoding steps (new strings/old rules), and new strings
that required new sequences of recoding operations (new strings/new
rules). Woltz et al. (1996) found the most improvement for old strings/
old rules, an intermediate amount for new strings/old rules, and the least
transfer to new strings/new rules. These results were interpreted as evi-
dence for both instance-based learning (i.e., learning of particular exam-
ples) and rule-based learning.

RT and Accuracy in Implicit Sequence Learning and Explicit Sequence
Prediction
Sometimes RT (or accuracy) can reveal memory in the absence of inten-
tion to retrieve information from a learned episode. This type of memory
is referred to as implicit memory and distinguished from intentional re-
trieval, which is termed explicit memory (Tulving & Schacter, 1991).
Implicit memory has been examined for single items (Jacoby & Dallas,
1981; Tulving, Schacter & Stark, 1982), associations between items
(Goshen-Gottstein & Moscovitch, 1995a, 1995b; Graf & Schacter,
1995), and sequences (Reber, 1967).

In studying implicit sequence learning, strings of letters or digits are
generated through the use of a finite state grammar (Cleeremans &
McClelland, 1991; Reber, 1967). To create the sequence of stimuli, one
starts at a given node (figure 10.4) and probabilistically chooses a path
to another node. Note that the first node is identical to the last node, so
this generative process may be repeated indefinitely. The label of the cho-
sen path is the current stimulus. To introduce some additional noise into
the task, on some proportion of trials the stimuli are chosen randomly
(i.e., without using the finite state grammar).

In one version of this approach (Jiménez et al., 1996), a simple RT
task was employed; letters were shown one by one on the screen, and
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Figure 10.4
Depiction of the artificial grammar used by Jiménez, Méndez, & Cleeremans
(1996). An artificial grammar is used to create a sequence of stimuli based on
probabilistic rules. To create a sequence, begin with node zero and choose a ran-
dom path. For simplicity, let us suppose that each path is chosen with an equal
probability. If the path from 0 to 1 is chosen, the sequence begins with A. From
node 1 there are two possible transitions. If node 5 is chosen, the second element
in the sequence is E. This process may repeat indefinitely. Note that the sequence
AEFBFDBC is generated by traversing the nodes 015034612. Not all sequences
are valid. For example, there is no way to generate the sequence ABCD from this
artificial grammar.

subjects pressed the key corresponding to the displayed letter. Unbe-
knownst to the subjects, there was a probabilistic pattern to the sequence
of stimuli (letters). The basic result was that RTs consistently improved
over trials. If a new grammar was switched to, RTs slowed down—this
shows that the facilitation in performance was not simply due to a learn-
ing-to-learn effect. As is generally the case, the facilitation in RTs fol-
lowed a power law. This improvement has typically been taken as
evidence for implicit sequence learning.

Jime
´
nez et al. (1996) introduced a second task in which subjects were

instructed to press the key of the letter they thought would follow the
probe letter. In this task, accuracy was the primary variable of interest
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and retrieval was explicit. Interestingly, subjects were able to predict the
next letter at a rate substantially better than chance.

Because of the introduction of random letters every so often in the
sequence, Jiménez et al. (1996) were able to assess the degree to which
prior items in the sequence facilitated subsequent performance. They
found that in both the explicit prediction task and the implicit reaction
time task, two prior items added significantly to a single prior item, but
a third prior item did not significantly improve performance. Contrary
to expectations, implicit memory showed the same general pattern as ex-
plicit memory. Also, accuracy measures exhibited the same basic pattern
of results as RT measures.

Accuracy and RT analysis of the Ranschburg Effect
Sequences of items that contain a repeated element are harder to
reproduce than sequences consisting of all unique elements. For example,
the sequence of digits 723856391 is harder to recall in order than
the sequence 723856491. This finding is known as the Ranschburg
effect.5 At first glance, one would expect repetition of a list item to
improve rather than worsen memory for ordered lists. A list with a
repeated element has fewer different elements to be learned. This is
especially evident in the case of words where the pool of possible
elements is very large. In addition, we might expect processing the
first of the repeated elements to facilitate, or prime, the processing of
its repetition.

Rather than just considering subjects’ overall ability to reproduce the
list, Crowder (1968) and Jahnke (1969, 1970, 1972) examined error rates
for individual list elements. They found that repeating elements at sepa-
rated list positions resulted in impaired memory only for the second in-
stance of the repeated element. In a sequence such as 723856391, subjects
made more errors on the second of the repeated 3s than on an item from
the same position in a control list (containing all unique elements). If,
however, an element was repeated successively, subjects were better at
recalling both repeated elements, but showed no facilitation or impair-
ment in recalling the rest of the list. In a sequence such as 723385691,
subjects performed better on the repeated 3s than on items from the same
positions in a control list.
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Greene (1991) suggested that a guessing strategy might account for the
Ranschburg effect. Most studies of the Ranschburg effect employ lists of
between 8 and 10 digits with only a single repeated element. When the
set of elements is determined (i.e., the digits 0–9), the task only requires
that subjects remember which elements belong in which positions. Even
with lists of 8 or 9 digits, subjects have most of the information about
the list elements, and the task depends primarily on remembering the
order. At the end of the list, where performance is generally poor,6 sub-
jects are most likely to guess. Because only a single element is repeated,
it makes sense to guess from among the elements (digits) that they have
not already recalled. This will boost performance for all but the repeated
items. Because the second repeated item is usually near the end of the
list, where poor memory encourages guessing, recall of that element will
show greatest impairment relative to the control list. Greene (1991) tested
this guessing hypothesis by either encouraging subjects to guess liberally
or telling subjects not to guess at all. When encouraged to guess liberally,
the Ranschburg effect was enhanced. When guessing was strongly dis-
couraged, the Ranschburg effect was eliminated.

Kahana and Jacobs (1998) wondered if a Ranschburg effect would
be obtained using latency (IRTs) rather than accuracy as the variable
of interest. Subjects studied lists of nine consonants with or without
a single repeated element. The process of studying and recalling ele-
ments was repeated until each sequence was reproduced perfectly on
three successive trials. On these final three perfect trials, the computer
recorded the subjects’ IRTs between successive recalls. Relative to a
control list with no repeated elements, subjects had longer IRTs to the
second repeated element if the repeated elements were spaced apart in
the list. In contrast, subjects had shorter IRTs to the second repeated
element if the repetitions were in nearby list positions. IRTs to the first
of the repeated elements were unaffected by the repetition (as compared
with control lists of nonrepeated elements). These results are shown in
figure 10.5.

This study demonstrates that the Ranschburg effect, previously only
known from accuracy data, can also be revealed using latency data
(IRTs). But the latency data make Greene’s (1991) guessing account far
less appealing. Because the latency data are examined only after accuracy
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Figure 10.5
Data illustrating the effects of within-list item repetition on reaction times in a
sequence recall task (Kahana & Jacobs, 1998). Error bars denote 95% confidence
intervals. See text for details.

has reached 100%, it is unlikely that these data are contaminated by
guesses. In addition, using lists of nine consonants as stimuli makes guess-
ing relatively ineffective. As subjects pass the halfway point in the list,
there are 16 possible items for only four remaining positions—guessing
is not very helpful under these circumstances. Based on the Kahana &
Jacobs study, it seems that the Ranschburg effect is a reliable memory
phenomenon that can be revealed using both accuracy and latency mea-
sures. Although the parallel finding of Ranschburg interference in both
accuracy and RT data may suggest that accuracy and RT are ‘‘two sides
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of the same coin,’’ these two measures provide crucially different kinds
of information with respect to the theories of the task.

The Subspan Item-Recognition Task
For a sufficiently easy task, one needn’t engage in extensive practice to
achieve near perfect accuracy. For example, if you ask someone to re-
member a five-digit number over a period of time during which there is
no distracting information presented, error rates will be negligible. Mem-
ory span is a term used to denote the number of items that a person can
reproduce in the correct order without errors. Lists of items that are
shorter than an average person’s memory span (about seven digits, six
letters, or five words; Crannell & Parish, 1957) are called subspan lists,
and lists that exceed memory span are termed supraspan lists.

Sternberg (1966) examined recognition memory for subspan lists. In
the subspan item-recognition task (also called the Sternberg task or the
memory-scanning task), subjects are presented with a short list of items
(digits, words, letters, etc.). Following a brief delay (typically 1–2 sec-
onds), a probe item is shown, and subjects indicate whether the item was
one of the elements of the original list. In Sternberg’s original experi-
ments, subjects were well practiced at this task.

Because the list is subspan, there are few errors (less than 5%) and
consequently the dependent variable of interest is RT. The effects of nu-
merous experimental manipulations on RT have been investigated. These
include variations in list length, probe type (list items versus nonlist
items), serial position of the probe item (if it is in the list), or recency of
the probe item (if it is not in the list), and the kind of materials used (e.g.,
letters, digits, words, random polygons, etc.). When a probe item is one
of the list items, it is called a positive probe (because it warrants a positive,
yes response). Similarly, nonlist items are called negative probes.7

In Sternberg’s 1966 paper, two procedures were introduced. In the var-
ied list procedure, lists are randomly chosen for each trial and list length
varies from trial to trial. In the fixed list procedure, a given list of items
is prememorized and then repeatedly tested. This process is repeated for
prememorized lists of various lengths. Sternberg’s results are shown in
figure 10.6. Panel A presents data obtained using the varied list proce-
dure, and panel B presents data obtained using the fixed list procedure.



Figure 10.6
Reaction time as a function of list length for Sternberg’s (1966) subspan item-
recognition experiments. Panel A shows data obtained using a varied list proce-
dure; panel B shows data obtained with a fixed list procedure. In the varied list
procedure, items (typically digit, letters, or words) change from trial to trial. In
the fixed list procedure, the items are the same for each trial; only the test cue
changes. The equations given in each figure characterize the best-fitting line
through the average data for positive and negative probes.
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In both cases, Sternberg found that mean RT increases linearly with list
length. Two features of these data are particularly striking. First, the
slopes of positive and negative probes are indistinguishable. Second, the
slopes of the linear list-length functions are equivalent for both the fixed
list and the varied list procedures.

Sternberg (1966) proposed a simple model to account for these
data. He assumed that the probe item is serially compared with each
member of the set of items that are activated in memory (the search set).
In a serial comparison process, a new comparison does not begin until the
previous comparison has been completed. This explains why RTs increase
linearly with list length (each additional item requires one additional
comparison), but why are the slopes identical for positive and negative
probes?

Consider what happens if the memory comparison process is self-termi-
nating. The probe item is compared with each list item until a match is
detected or the list is exhausted. This is called a self-terminating search
because the comparison process terminates as soon as a match is detected.
Consider a list of three items. If given a positive probe (randomly chosen
from among the three list items), there is an equal probability of finding
a match after one, two, or three comparisons. On average, two compari-
sons are required. If a negative probe is given, three comparisons are
always required (all three list items must be rejected). What happens if
the list length is increased from three to four? A positive probe now re-
quires either one, two, three, or four comparisons, resulting in an average
of 2.5 comparisons. A negative probe requires all four comparisons to
be made. Consequently, increasing the list length by one item results in
an increase of 1 comparison for negative items, but only 0.5 comparisons
(on average) for positive items. Thus, the slope for negative probes should
be twice as great as the slope for positive probes. This is clearly not the
case (see figure 10.6).

To explain the equivalence of slopes for positive and negative probes,
Sternberg suggested that the serial comparison process is exhaustive.
Exhaustive search means that the probe item is compared with every
item in the search set, and a decision is not made until all comparisons
have been made. This idea may seem unrealistic, but if the comparison
process is extremely fast and the decision process is noisy and slow, it
makes sense to do all of the comparisons prior to making a decision rather
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than making a separate decision after each comparison (Sternberg,
1969b).

Sternberg (1969a) presented a more complete description of the basic
scanning model. The model has four stages: stimulus encoding, memory
comparison, decision, and response. The following claim is critical to the
analysis of this model: a given process or stage is not initiated until the
previous stage is completed. This claim is reasonable if a stage acts on
information produced by a preceding stage that must be available in a
fairly complete form (Sternberg, 1998a). Much debate has centered on
the validity of this claim (e.g., Hockley & Murdock, 1987; McClelland,
1979). We will return to this issue later in this chapter. A final important
detail of the model is that scanning times needn’t be fixed. It is often
assumed that the time to scan a given item comes from a distribution of
possible values. The shape of the distribution (e.g., normal vs. exponen-
tial) and its mean and variance are important in generating model predic-
tions (e.g., Luce, 1986, chapter 11).

As discussed previously, recall performance depends crucially on the
recency of the items being tested (see ‘‘Accuracy and Interresponse Times
in Free Recall,’’ p. 324). One may ask how the RT to recognize an item
depends on the item’s position in the study list. In particular, are subjects
faster at recognizing recently presented items? In Sternberg’s short-term
item-recognition task significant recency effects are often, but not always,
obtained (see McElree & Dosher, 1989, and Sternberg, 1975, for re-
views). In the clearest case, Monsell (1978) found dramatic recency (i.e.,
facilitation of positive responses to recent list items) using either letters
(experiment 1) or words (experiment 2) as stimuli (figure 10.7). In
Monsell’s study, the test probe followed the last list item either immedi-
ately (right panel) or after a brief delay (left panel). The delay condition
required subjects to name a vowel presented immediately after the last
list item (this took an average of 500 ms). This step was performed to
prevent subjects from rehearsing the list items during the delay period.
In an earlier study, Forrin & Cunningham (1973) showed that increasing
the length of an unfilled delay between study and test eliminates the re-
cency effect in short-term item recognition. In general, experimental con-
ditions that reduce or eliminate rehearsal tend to produce large recency
effects, and those that allow for rehearsal (e.g., Sternberg, 1966) typically
have flat serial-position curves.
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Figure 10.7
Serial position data from Monsell (1978, experiment 1). A fast presentation rate
(500 ms/item) was designed to minimize rehearsal. In the immediate test, the
probe item immediately followed the presentation of the last list item; in the de-
layed test a vowel had to be named after the offset of the last list item. As soon
as a response was detected, the probe item was presented.

According to Sternberg’s serial exhaustive-scanning (SES) model, a re-
sponse cannot be made until every comparison has been performed. Con-
sequently, the time required to perform the memory scan should be
independent of serial position. In light of this, the marked serial position
effects obtained by Monsell (1978) and others present a challenge to the
Sternberg model. In fact, some authors have rejected the Sternberg model
because of this evidence alone. In response, two points need to be made.
First, the Sternberg model was designed to explain data obtained under
conditions where subjects could freely rehearse highly familiar items (e.g.,
Sternberg, 1966). Under these conditions, significant serial position ef-
fects are consistently absent (Ferrin & Cunningham, 1973). Second, facil-
itation in performance may be occurring in other stages of the model
(Sternberg, 1975). For example, recent items may speed, the encoding of
the probe item or the execution of the response—thereby resulting in
faster RTs (for a similar argument in the literature on same-different com-
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parisons, see Proctor, 1981). This priming account of the recency effect
is difficult to reconcile with the problem of recent negatives. If a probe
that was not on the current list was presented as a target on a recent
prior list, RTs to respond ‘‘no’’ to the negative probe are significantly
increased (e.g., McElree & Dosher, 1989, experiment 2) this finding has
proven difficult to reconcile with Sternberg’s SES model.

Another challenge to Sternberg’s SES model comes from studies that
examine list length effects beyond the span of immediate memory. As
mentioned earlier, near perfect accuracy is attained either when lists are
short (subspan) or through practice (for longer, supraspan, lists). Burrows
and Okada (1975) used a prememorized list technique to study RTs in an
item recognition task with list lengths far beyond the limits of immediate
memory. Their results are shown in figure 10.8. For subspan list lengths
(two–six), the slope of the best-fitting line is 37 ms—replicating the clas-
sic Sternberg effect. However, a separate line fit to the supraspan lists
(lengths greater than eight) yielded a much shallower slope of 13 ms/
item. Burrows and Okada also fit a single logarithmic function to their
subspan and supraspan data. They found that this function fit all of the
data points as well as both the bilinear subspan and supraspan functions,
but with fewer parameters. According to the serial exhaustive scanning
model, each additional item in the memory set should result in a constant
increase in mean RT for both positive and negative probes. These data
indicate that the increase in mean RT is not a constant, but varies with
list length. This finding is not easily reconciled with the SES model.

So far we have discussed serial position effects (e.g., Monsell, 1978)
and list length effects (e.g., Burrows & Okada, 1975) in the context of
RT studies of short-term memory. Another major variable that is studied
in human memory is repetition. Baddeley and Ecob (1973) wondered
what would happen if a single list element in a Sternberg task were re-
peated. Under these conditions, mean RT is significantly faster for re-
sponding to the repeated element than to nonrepeated elements. Like the
serial position effects reported by Monsell (1978), these data seem incon-
sistent with the SES model. If each element must be scanned before a
response can be made, it should not matter how many times an element
is presented. This critique of the Sternberg SES model assumes that other
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Figure 10.8
Data illustrating the effect of a large range of list lengths on mean reaction time
in a probe recognition task (Burrows & Okada, 1975, experiment 2). To achieve
nearly errorless performance, lists were ‘‘prememorized’’; that is, before testing
a given list length, the list was already well learned. In the figure, a bilinear func-
tion is fit to the data. For short list lengths, the slope of the RT-list length function
is similar to results obtained by Sternberg (1966). For longer list lengths, mean
RT rises slowly as list length increases (the slope of the best-fitting line is only
about 13 ms). As noted by Burrows and Okada (1975), a simple log function fits
the data as well as the two linear functions shown here. This raises questions
about the linearity of the list length–RT functions reported for short lists.

stages are not influenced by repetition. It is not unreasonable to suppose
that the decision stage is executed more quickly when two matches have
been registered than when only a single match has been registered.

In the years since the publication of Sternberg’s original paper, Stern-
berg’s basic experimental findings have been replicated and extended
hundreds of times in studies that manipulated dozens of different experi-
mental variables (see Sternberg, 1975, for a review). Although the data
are solid, there has been a long debate about the meaning and interpreta-
tion of these findings. Many models have been proposed to account for
the basic data, yet none of these models has succeeded in capturing most
of the benchmark effects (Sternberg, 1975). Although the simplest version
of any model can easily be rejected, the model’s creators can often patch
things up to correct for the most serious problems. By the 1970s it was
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already becoming clear that many different types of models can produce
identical predictions for data on mean RTs (e.g., Anderson, 1973, Town-
send, 1976, 1984).

More recently, attention has shifted from looking at mean RTs to ex-
amining the actual shape of the RT distribution. It turns out that although
very different types of models can explain the same pattern in the mean
RTs, explaining the exact shape of the distribution and how it changes
with manipulation of experimental variables is more difficult. Memory
theorists have begun to tackle this issue with promising results (Ashby,
Tein, & Balakrishnan, 1993; Hockley & Murdock, 1987; Ratcliff, 1978).

The three findings just reviewed, list length, serial position, and repeti-
tion effects, all show parallel effects on accuracy and latency. Longer lists
are harder to remember than shorter lists. Recently presented items are
easier to remember than items presented earlier in the list. Repeated items
are easier to remember than nonrepeated items. It may be argued that
both the time it takes to recognize an item and the likelihood of successful
recognition are reflections of a single construct—the strength of the mem-
ory trace.8 Appealing as this idea may seem, we will later see that the
precise nature of the relationship between accuracy and latency may pro-
vide important information for testing models of memory.

Task Analysis Using Accuracy and RT Data

If the goal of information-processing research is to break down a complex
task into logically distinguishable mental operations and then character-
ize and model those operations, how do we go about breaking down the
complexity of real-world tasks? Among researchers who are concerned
with accuracy, the standard method of task analysis is to look for experi-
mental factors (e.g., word frequency or the spacing of repeated elements)
that have different effects on different memory tasks or on different as-
pects of subjects’ performance in a given task. Consider the serial position
curve in free recall. Presenting the list auditorally results in a larger re-
cency effect (better memory for the last few list items) than does present-
ing the list visually (this phenomenon is referred to as a modality effect).
However, the mode of presentation (auditory vs. visual) has no effect on
the rest of the serial position curve.9 This finding is called a functional
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dissociation between the recency and the prerecency part of the serial
position curve. Another experimental variable, list length, has no effect
on the recency part of the serial position curve but has a substantial effect
on the prerecency items. With this second, complementary dissociation,
the tasks are said to be doubly dissociated. Such double-dissociations are
sometimes taken to support the view that recency and prerecency items
represent the operation of distinct short-term and long-term memory
systems.10

If we are willing to make the assumption that some sets of mental oper-
ations are arranged (at least approximately) in nonoverlapping stages
(i.e., one stage begins only after the prior stage is done with its pro-
cessing), we can perform a more sophisticated task analysis using mean
RT data. This approach is called the additive factors method (Sternberg,
1969a; Sternberg, 1998a). The key to this approach is the factorial exper-
imental design. Two or more factors that are known to affect overall
RT are manipulated factorially. If each of the factors selectively affects
a different processing stage, then total RT should be given by the sum of
the separate effects of each factor on RT. If however, the two factors
influence a common stage, total RT will deviate from the sum of the
separate effects, and the factors can be said to interact, in a statistical
sense.

As an example of the additive factors approach, consider an experi-
ment in which the RT-list length relationship is examined as a function
of some other variable: in this case the variable of whether or not the
test probe is degraded (made to look blurry) via reduction of contrast or
randomizing pixels. Sternberg (1967b) conducted this experiment and his
results are shown in figure 10.9. The nearly identical slopes of the two
functions indicate a lack of interaction between list length and whether
the probe item is degraded: that is, the RT difference between the clean
and degraded conditions is approximately the same for each value of list
length. In this experiment two factors are varied: list length and probe
degradation. Probe degradation simply lowers the RT-list length function
by a fixed amount. Statistically, it is said that these factors do not interact
(see figure 10.9). Such additivity is predicted by a discrete stage model
in which stimulus degradation affects one stage (perhaps encoding) and
set size affects another stage (perhaps comparison). If two factors affected
the same stage, one would expect to find a statistical interaction (i.e., the
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Figure 10.9
Data from Sternberg (1967), illustrating the effect of visually degrading the probe
on the RT–list length relation. For both degraded and clean probes, RT is linearly
related to list length. There is no interaction, as indicated by the nearly parallel
lines for the two conditions. The left panel shows data for the first session of doing
the task, and the right panel shows data for the second session. Degree of practice
(session 2 versus session 1) does not seem to affect either the slopes of the function
or the difference between degraded and intact performance. Rather, practice just
speeds everything up (as indicated by the lower intercepts for session 2).

slope of the list length-RT function would be different for degraded and
nondegraded stimuli). Sanders (1980) and Sternberg (1998a) reviewed a
great deal of evidence from a broad range of factorial RT studies. They
found that many variables that would logically be expected to influence
different processing stages do have additive effects on RT.

The additive factors method is not without its detractors. An early criti-
cism of the method is that it relies entirely on RT measurements. These
measurements may not be comparable across experimental conditions
that differ even slightly in accuracy. Pachella (1974) presented a cogent
review and critique of the research on RTs during the prior 10 years. As
will be described in detail, Pachella pointed out that when you correct
for the differences in error rates across conditions, some of the additive
effects observed in RT data disappear. This type of error rate correction
assumes something called a speed-accuracy trade-off, which will be dis-
cussed in the next section.
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A subsequent challenge to the additive factors approach came from
demonstrations that models that assume continuous transmission of
information (i.e., the products of a given stage are constantly available
to the next processing stage) can often produce additive effects on mean
RT (Ashby, 1982; McClelland, 1979). Roberts and Sternberg (1993)
performed a detailed analysis of the McClelland-Ashby model. They
found that although the model could predict additive effects on mean
RT for some parameter values, the model did not provide a reason-
able fit to additivity at the level of the entire RT distribution. Rob-
erts and Sternberg’s work exemplifies the recent trend toward fitting
RT distributions rather than simply mean RT. Distributional tests pro-
vide investigators with significantly greater resolution in distinguishing
theories.

In an interesting development in this area, Schweikert (1985) and Rob-
erts (1987) have each expanded the additive factors approach to deal
with accuracy and response rate data respectively. Consider a model in
which a correct response relies on the completion of two independent
processes, A and B. Further, assume that process B must act on the com-
pleted output of process A. If processes A and B provide adequate infor-
mation for a correct response with probabilities p(A) and p(B)
respectively, then the probability of a correct response is given by p(A)
3 p(B). Converting to logarithms, we can write

log p(A and B) 5 log p(A) 1 log p(B). (10.2)

If each of two factors selectively influence each of the two hypothetical
processes, one would expect additive effects of the factors on the log-
arithm of recall probability. This finding has been observed by a number
of investigators in a number of different experimental paradigms (see
Schweikert, 1985, for a review).

Complications Introduced by the Possibility of Speed-Accuracy Trade-
offs

As we have noted, several individuals, most notably Wickelgren and
Pachella, wrote of serious difficulties that are entailed when RT studies
do not consider variation in error rates across experimental conditions
(e.g., Corbett & Wickelgren, 1978; Pachella, 1974; Wickelgren, 1977).
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Consider the curves shown in figure 10.10A. This figure introduces the
concept of a speed-accuracy trade-off. The general idea is simple: the
more time you allot to some task, the better you will do at that task. For
instance, if you are typing, you could type slowly and make relatively
few errors or, alternatively, you could type more quickly and make more
errors. In this example, you, the typist, decide what you will do in terms
of trading off additional speed for less accuracy.

In figure 10.10A, condition 1 and condition 2 refer to two conditions
in some RT experiment. Condition 2 is assumed to be more difficult than
condition 1; thus conditions 1 and 2 could, for example, be three- and
five-item lists in our familiar item-recognition task. For each condition,
probability correct is plotted as a function of what is termed processing
time. For the moment, processing time, which is measured from the begin-
ning of stimulus onset, is an unobservable construct. The idea here is that
the onset of the to-be-processed stimulus (e.g., the probe word in the
recognition test) triggers appropriate perceptual and cognitive processing.
The more such processing occurs, the more information about the stimu-
lus is obtained. At any given processing time, some specific amount of
information has been obtained. Probability correct corresponding to that
particular processing time is the probability that with only the informa-
tion obtained thus far, a correct response would be made.

The curves that relate probability correct to processing time are called
speed-accuracy trade-off (SAT) curves. The greater difficulty of condition
2 compared to condition 1 is embodied in the observation that in order
to obtain some fixed level of response probability, more processing time
is required for condition 2 than for condition 1. Notice that SAT curves
are like typical RT curves (e.g., as in a Sternberg paradigm) rotated by
90°. Whereas in a typical RT function, processing time is plotted as a
function of amount of required processing (e.g., of memory list length),
in an SAT curve amount of processing (measured in terms of probability
correct) is plotted as a function of allotted processing time.

Implications of Only Observing RTs
In a typical RT task, SAT curves are not directly measured. Rather, in a
given experimental condition, subjects adopt (implicitly or explicitly)
some criterion point on the SAT curve (just as when you are typing you
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Figure 10.10
Hypothetical speed-accuracy tradeoff (SAT) curves for two conditions. In (A), X
and Y indicate where the speed-accuracy criteria are placed. In (B), X, Y, and Z
indicate where the speed-accuracy criteria are placed. In both panels, RT1 and
RT2 are the RTs for conditions 1 and 2; Err 1 and Err 2 are error rates for
conditions 1 and 2. In panel B, RT 2a shows the RT for condition 2, assuming
an error rate equal to the error rate of condition 1.
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must decide how fast you are going to type, which, in turn, will produce
some corresponding degree of accuracy). The processing time corre-
sponding to this criterion is the observed RT in the experiment, and the
probability correct corresponding to this criterion is 1.00 minus the ob-
served error probability in the experiment.11

To illustrate the complexities of doing standard RT experiments, con-
sider the curves in figure 10.10A. In condition 1, the criterion point is
labeled X. This corresponds to an observed RT of 170 ms, and an ob-
served error rate of .01 (1.00 2 .99 probability correct value). In condi-
tion 2, the observed RT is 150 ms, and the observed error rate is .13.
Clearly, something is amiss. The presumably more difficult condition 2
has a shorter observed RT (150 ms) than does the presumably less diffi-
cult condition 1 (170 ms). Thus with RT information only, the experi-
menter would, incorrectly, conclude that condition 2 is less difficult than
condition 1.

Fortunately, experimenters would not be quite so naive. Rather, the
experimenter would quickly note that the observed error rate in condition
2 (.13) is greater than the observed error rate in condition 1 (.01) and
would become suspicious that the shorter observed RT in condition 2
may be due to a speed-accuracy trade-off—that is, in condition 2, observ-
ers are (for whatever reason) sacrificing accuracy for increased speed—
and it is for this reason that RT is shorter in condition 2 than in condition
1. This would lead the experimenter to suspend judgment about the rela-
tive difficulty of the two conditions and rerun the experiment, chang-
ing the subjects instructions so as to eliminate this speed-accuracy
confounding.

Necessary Conditions for Safe Ordinal Conclusions
Let us imagine that this rerunning produces the data of figure 10.10B.
Again, the two speed-accuracy criterion points are labeled X and Y for
condition 1 and 2 (ignore point Z for the moment). Now the observed
RTs are 115 ms and 150 ms for condition 1 and 2 respectively. Thus,
these observed RTs now correctly reflect the greater difficulty of condi-
tion 2 compared to condition 1. In addition, the observed error rates are
.07 and .12 for conditions 1 and 2, respectively. In short, condition 2
now has both a longer observed RT and a higher observed error rate than
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does condition 1. Thus, the experimenter could correctly conclude that
condition 2 is more difficult than condition 1. In addition, because of the
higher observed error rate in condition 2 compared to condition 1, the
experimenter would be confident that the longer RT of condition 1 could
not have come about because of a speed-accuracy trade-off. To summa-
rize: when one condition (condition 2) produces both longer RTs and
higher errors than another condition (condition 1), the experimenter can
safely conclude that condition 2 is intrinsically harder than condition 1.

Quantitative Interpretational Difficulties
However, the speed-accuracy trade-off problem has not been completely
solved even when the data emerge as in figure 10.10B. Suppose the experi-
menter were interested in the magnitude by which the condition-2 pro-
cessing time exceeded the condition-1 processing time. The best estimate
from the figure 10.10B data would be that this value is the difference of
the observed RTs, that is, 150 ms 2 115 ms 5 35 ms. But would this
be accurate? No, it wouldn’t, because the two conditions differ in terms
of error rate as well as in terms of RT.

Suppose the experimenter had been lucky enough that the error rates
were identical—say, .07—in both conditions. Now the two speed-accu-
racy criterion points would be X and Z on figure 10.10B. Note that the
RTs corresponding to condition 1 and 2 would be 115 and 175 ms (the
latter is labeled as RT 2a in the figure). Therefore, the real difference
between the two conditions—that is, the RT difference with error rates
held constant at .07—would be 175 ms 2 115 ms 5 60 ms. Quantita-
tively, this is quite a different conclusion from the 35-ms figure that we
would have arrived at from the actual data that entailed the different
error rates. This means that many patterns of RT data are difficult to
interpret when error rates differ among the conditions.

Consider Sternberg’s (1966) finding that RT increases linearly with list
length in a subspan item recognition paradigm (see figure 10.6). It was
this result that led Sternberg to postulate a serial comparison process (i.e.,
when the probe item is compared with each element of the memory set,
one comparison does not begin until the prior comparison has been com-
pleted). But, if error rates vary systematically as a function of list length,
it is unlikely that the observed linear RT functions would be obtained
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under conditions in which error rates did not vary with list length (see
Pachella, 1974).

Equalizing Error Rates Is Still Not Enough
Suppose one could carefully control error rates so that they were identical
in the various conditions. Going back to figure 10.10B, suppose that the
speed-accuracy criteria for conditions 1 and 2 were at points X and Z.
Note there that the associated RTs of 115 and 175 ms are those associated
with a particular error rate—specifically, .07. However, this error rate is
arbitrary; that is, there is no reason why we should be interested in the
RTs associated with this error rate as opposed to any other error rate.
It is easy to see that if we observed RTs associated with some other error
rate—say .50—then both the RTs associated with the individual condi-
tions and the difference between the two RTs would be different. It is
for this reason that more and more investigators have adopted the some-
what time-consuming but more informative strategy of mapping out en-
tire SAT curves for various conditions. The means by which this mapping
is done are described in the next section.

An Important Caveat
The foregoing analysis indicates potential problems with the RT ap-
proach. Suppose, however, that every mental process is characterized by
two independent variables: the time it takes (resulting in measured RT)
and the information it provides (resulting in measured accuracy). Forcing
subjects to respond quickly may still increase errors because a response
may be required before the process completes. Yet, left to their own de-
vices, subjects may respond as soon as the necessary processing is com-
plete, and the measured RT may then be directly interpreted as reflecting
the time required to perform a given task. There is still considerable de-
bate as to how serious the problems are with the RT approach (see Stern-
berg, 1998b, appendix A, for a detailed discussion of this point).

SAT Curves in the Study of Human Memory

Schouten and Bekker (1967) introduced an experimental technique to
study the SAT function. In this technique, called the response signal pro-
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cedure, (RSP) subjects are trained to make their response as soon as a
signal is given. An SAT curve is constructed by varying the onset time of
the response signal. At the very shortest delays, the subjects response is
essentially a ‘‘guess’’; the information processing needed to make a cor-
rect response has not begun to become available. As the signal delay in-
creases, the subject has more time, and presumably more information
becomes available. Performance increases with the time of the response
signal until it reaches some asymptotic value.

As you might imagine, subjects find this task to be quite difficult. To
ensure that subjects respond almost immediately after the onset of the
response signal requires considerable practice. One of the hardest aspects
of this task is withholding a correct response until the signal appears.
Some subjects simply cannot do this, and consequently they are excluded
from participating.

Before describing the mathematical form of the SAT curve, it is neces-
sary to introduce a special index of performance that is often used in
studying detection, discrimination, and recognition. Consider our famil-
iar recognition memory task. This task can be seen as a discrimination
task between two sets of items—studied items and nonstudied items. Per-
formance is then characterized in terms of subjects’ ability to discriminate
studied from nonstudied items. One way of measuring discriminability
is by taking the probability of a correct yes response (called a hit) and
correcting for the probability of an incorrect yes response (called a false
alarm). The way this is done is by first transforming hit rate and false
alarm rate to z scores (i.e., convert the raw scores into standard scores).
The difference between the z-transformed hit rate and the z-transformed
false alarm rate is termed d prime (written as d′).

Using d prime as our measure of performance, it has been shown that
SAT curves for individual subjects are well fit by an exponential growth
to a limit, given by the equation

d ′ 5 λ(1 2 e2β(t2δ)), t . δ. (10.3)

The three parameters in equation 10.3, λ (lambda), β (beta), and δ (delta),
characterize three phases of information processing. In phase one, t , δ,
no information is available. After t 5 δ, the information rises with rate
β (phase 2) until it reaches an asymptotic level of performance (phase 3).



354 Methodology in Cognition

Figure 10.11
Hypothetical speed-accuracy tradeoff (SAT) curve generated by an exponential
rise to an asymptote (see equation 9.3). In this figure, all of the curves assume
an intercept, δ, set to 1. For the lowest curve (long dash), the rate parameter, β,
and the asymptote, λ, are also set to 1. Above this curve, the dark solid curve
has a rate parameter of 2. The uppermost curve is defined by a rate parameter
of 1 and an asymptote of 2.

Note that we must choose a certain point on the SAT curve to character-
ize the asymptotic phase. The form of equation 10.3 for different parame-
ter values is shown in figure 10.11.

Reed (1973, 1976) applied this response signal procedure to studying
short-term item recognition. McElree and Dosher (1989), following up
on Reed’s (1976) work, examined SAT curves in the Sternberg task. They
conducted two experiments that replicated the standard effects in the lit-
erature: asymptotic accuracy varied linearly with list length, and pro-
nounced serial position effects were observed. SAT curves for lists of four
and six items are shown in figure 10.12. Analyzing these curves separately
for different serial positions and list lengths revealed a surprising result:
neither the rate nor the intercept of the SAT curves varied with list length.

According to the classic Sternberg (serial exhaustive-scanning) model,
what predictions can one make about the shape of the SAT curves? If
each comparison has an equal duration, increasing list length should re-
quire more comparisons. Consequently, each added item should cause
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Figure 10.12
Observed average performance (as measured by d-prime) as a function of total
processing time for list lengths of four and six. Smooth functions are based on
the fits of an exponential rise to an asymptotic function (equation 9.3).

the minimum processing time to increase by the comparison time. This
would produce a difference only in the intercept of the SAT curve. Reed’s
(1976) data ruled out this hypothesis.

Consider a more sophisticated version of the Sternberg model in which
the comparison durations vary from trial to trial and from item to item.
Because a response cannot be made until all comparisons are complete,
longer list lengths will still require more processing time. For the case of
a single list, the comparison will be completed very fast for some items
and very slowly for other items (with a range of comparison times in
between); this variability will result in a gradually increasing SAT curve
(assume that subjects guess if they haven’t completed all memory compar-
isons). If there are more items in the list, the likelihood of all of the items
having fast comparison rates is quite low, so the SAT curve should rise
more gradually as list length increases. As illustrated in McElree and
Dosher’s (1989) study (see figure 10.12), the rate of increase in the SAT
curve does not vary with list length. This finding cannot be reconciled
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with any known variant of the serial exhaustive-scanning model. How-
ever, Ratcliff ’s (1978) diffusion model, a parallel model of RTs, does
provide a reasonable account for the basic SAT data (McElree & Dosher,
1989; Ratcliff, 1978). The diffusion model will be discussed in more de-
tail later in this chapter.

Criticisms of the SAT Approach and the Response Signal Procedure

In our earlier discussion, we pointed out some of the potential dangers
involved in comparing RTs for conditions in which accuracy varies. It
was assumed that variation in accuracy could result from a speed-accu-
racy trade-off that would disguise true RT differences. As Pachella (1974)
pointed out, conditions that yield short RTs often result in lower error
rates than conditions that yield long RTs. But the correlation is not
100%. In some cases, error rates vary independently of RT even when
subjects are under considerable time pressure to respond (e.g., Sternberg,
1969b).

Given the availability of the response signal procedure as a means of
mapping out the effect of experimental variables on the complete SAT
curve, it may seem surprising that the field has not completely adopted
this approach. Aside from the added complexity of this experimental
technique, there have been several potentially serious problems with the
RSP that should be pointed out.

The first and most serious problem is that the response signal may alter
the way in which information is processed in a given task. Essentially the
response signal procedure turns a single task into a dual task. While sub-
jects are busy trying to derive the information needed to make a response,
they must be constantly attentive to the response signal. Then, even if
they are ready to respond, they must wait until the response signal arrives.
This turns a fairly simple task into a relatively complex one, making the
task of interest much more difficult to model.

Another important criticism of the response signal procedure is that
it cannot distinguish all-or-none processing from continuous accrual of
information. If all of the relevant information for a cognitive judgment
becomes available at some variable instant in time, SAT curves will still
appear to increase smoothly. How, then, can one distinguish between
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these fundamentally different views of cognition—all-or-none versus
continuous processing? Meyer, Irwin, Osman, & Kounios (1988) pro-
posed a variant of the response signal technique, called speed-accuracy
decomposition (SAD), as a means of resolving this ambiguity. In the SAD
technique, subjects are given regular (no signal) trials randomly inter-
spersed with signal trials. Because subjects don’t know if a trial is going
to have a signal until the signal arrives, subjects are free to respond as
soon as they are ready. On response signal trials, subjects may be re-
sponding on the basis of complete information (prior to the onset of the
signal) or on the basis of partial information (after the signal is given).
By obtaining RT distributions for both response signal trials and regular
(no signal) trials, it is possible to determine the separate contributions of
complete and partial information to the RTs obtained on the response
signal trials. To do this, one must be willing to make certain assumptions
about the relationship between responses based on complete and partial
information (see Meyer et al., 1988, for details). Although there has been
some debate as to the validity of these underlying assumptions (De Jong,
1991, but see Smith, Kounios, & Osterhout, 1997), in the worst case
these assumptions leave the investigator with no less information than
would be available using the more traditional SAT technique. Evidence
obtained using the SAD procedure has shown that under many conditions
information is accumulated continuously (e.g., Kounios, 1993; Kounios,
Montgomery, & Smith, 1994; Meyer et. al., 1988). However, a recent
study of problem solving revealed evidence for all-or-none processing us-
ing a SAD procedure (Smith & Kounios, 1996).

Performance Curves to Investigate Visual Information Acquisition

Speed-accuracy trade-off curves, of the sort described in the previous
section, can also be used to study relatively low-level processes such as
attention and visual information acquisition. When low-level processes
are under investigation a simple paradigm can be used in which, on each
of a series of trials, the following sequence of events occurs:

1. Usually a trial begins with a warning tone and a fixation point.
2. A stimulus (e.g., a picture) is presented for a variable but short dura-
tion (e.g., a duration ranging from 20 to 250 ms).
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3. The stimulus is followed by a visual mask that prevents information
acquisition from the iconic image that typically follows the visual stimu-
lus. Thus, the time the observer has available to process the stimulus is
carefully controlled.
4. Eventually, memory for the presented stimulus is tested. For instance,
if pictures were shown as stimuli, memory for the pictures might be tested
in a later recognition test.

In this paradigm, memory performance can be plotted as a function of
stimulus duration. This form of a speed-accuracy curve is known as a
performance curve. Performance curves have been generated by numer-
ous researchers to investigate a variety of issues.12

An Example: Using Performance Curves to Investigate Effects of
Priming
To illustrate how generation of such curves can be instrumental in formu-
lating precise conclusions about the mechanisms by which some variable
exerts its effect, consider the phenomenon of priming. In general, priming
refers to the effect of some priming stimulus on the perceptual and cogni-
tive processing of some related target stimulus that occurs near in time
to the priming stimulus. A classic example is that of a lexical decision
task (e.g., Meyer & Schvaneveldt, 1971). In an LDT, an observer is pre-
sented with a target letter string that is either a word or a nonword (e.g.,
NURSE or NIRSE) and must decide, as quickly as possible, whether the
letter string is a word or a nonword.

To see the effect of priming in this paradigm, consider the letter string
NURSE, to which, of course, the response ‘‘word’’ should be given. A
universally reported result is that the RT for correctly responding ‘‘word’’
to the target NURSE is faster when NURSE is preceded by a related word
(such as DOCTOR) than by an unrelated word (such as LION). Thus
the word DOCTOR is said to prime the related word, NURSE. One way
or another it shortens the time to correctly respond.

How does priming work? Consider two possibilities:

Possibility 1. The prime acts as if the observer has been given a brief
‘‘advance peek’’ (e.g., a 50-ms advance peek) at the target word. In this
case, of course, RT should be 50 ms faster in the primed than in the
unprimed condition.
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Possibility 2. The prime acts to speed up processing of the target word.
In this case, RT should still be faster in the primed compared to the un-
primed condition, but by how much is not clear.

In a typical RT experiment, these two possibilities cannot be distin-
guished, because simply observing a shorter RT to the primed compared
to the unprimed condition is consistent with either one. However, Reinitz
et al. (1989) investigated priming by observing performance curves.
Briefly, their experiment was as follows. On each of a series of trials, a
target picture of an object was presented for varying durations and was
followed by a visual mask. For instance, the target on one trial might be
a guitar. In a primed condition the target was preceded by a related word
(the word guitar in this example), whereas in an unprimed condition the
target was preceded by an unrelated stimulus (which was either an unre-
lated word, such as lamp, or just a row of Xs; these two unprimed condi-
tions produced identical performances, so we will lump them together
and just call them both the unprimed condition. Later, memory for the
target stimuli was tested in a recognition test.

The results of this experiment took the form of two performance
curves: performance as a function of original target stimulus duration for
both the primed and the unprimed conditions. Now the two possibilities
just sketched make different predictions, which are shown in figures
10.13 A, B.

Possibility-1 Prediction: Horizontally Parallel Curves Figure 10.13A
shows the quite straightforward prediction corresponding to possibility
1: If having a prime is like having an ‘‘advanced peek’’ of, say, X ms at
the target stimulus, then the two performance curves corresponding to
primed and unprimed conditions should be horizontally parallel; that is,
the horizontal difference between them should be some constant. The
magnitude of the horizontal difference corresponds to the duration that
the ‘‘advanced peek’’ is worth. If the data in figure 10.13A were obtained,
the experimenter would conclude that possibility 1 is correct and that
having a prime is like having an advance peek at the target picture of
duration 50 ms (the magnitude of the horizontal difference between the
curves). For any performance level achieved in the unprimed condition,
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Figure 10.13
Panel (A) illustrates the predictions for possibility 1 (the ‘‘advanced peek’’ possi-
bility). Note that the curves are horizontally parallel, separated by 50 ms. Panel
(B) illustrates the predictions for possibility 2 (the ‘‘speedup’’ possibility). Note
that the curves are horizontally diverging at a ratio of 1:2. Panel (C) illustrates
possibility 2, with duration plotted on a log axis. In this case, the curves are once
again horizontally parallel.
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Figure 10.13
continued

the subject needs 50 ms less in the primed condition because of the 50-
ms advanced peek provided by the prime.

Possibility-2 Prediction: Constant-Ratio Diverging Curves The predic-
tion for possibility 2 is a bit more complicated, and it is illustrated in
figure 10.13B. The idea here is that if the prime speeds up processing of
the target, by some ratio, r, then it should take r times as long to achieve
any given performance level for unprimed compared to primed targets.
In the illustration of figure 10.13B, r 5 2; that is, the prime speeds up
target processing by a factor of 2. Thus, for instance, to achieve a perfor-
mance of about .23 requires 50 ms for the primed targets but 100 ms for
the unprimed targets. To achieve a performance level of about .40 re-
quires 100 ms for the primed targets, but 200 ms for the unprimed tar-
gets, and so on.

One methodological note is of some interest here. Suppose you have
a data set corresponding to the primed and unprimed performance
curves, and you wish to see whether the data correspond to the prediction
of possibility 1 (figure 10.13A) or to the prediction of possibility 2 (figure
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10.13B). Testing the possibility-1 prediction is relatively straightforward:
you just ‘‘slide’’ the two curves horizontally relative to one another (either
physically, using transparencies, or electronically) and see if you can get
them to exactly overlap.

Testing the possibility-2 prediction shown in figure 10.13B is not so
straightforward. However, there is a trick that allows one to test the pos-
sibility-2 prediction in a similarly simple way. This is to plot the curves
on a log duration axis rather than on a linear duration axis (a linear
duration axis, as in figure 10.13B, is the normal way of plotting). Because
equal linear ratios correspond to equal log distances, the possibility-2
prediction is that when plotted on a log duration axis, the performance
curves should again be horizontally parallel. This possibility is illustrated
in figure 10.13C. How did the data actually come out? The answer to
this question is a bit complicated, and we will not describe it in detail
here. Suffice it to say that initially possibility 2 was confirmed: that is, at
least during the very early stages of perception, priming has the effect of
speeding up the rate at which processing takes place.

Models of RT Data in Human Memory

Earlier we asked the following question; Are accuracy and RT two sides
of the same coin? We then went on to show that under some circum-
stances, error rates are negligible and an analysis of RT reveals many
interesting features of human behavior. As an example of one particularly
well-explored domain, we considered RT data in the Sternberg subspan
item-recognition task. Three basic empirical findings emerged from these
studies. First, longer lists are associated with longer RTs—we called this
a list length effect. Second, in conditions designed to eliminate rehearsal,
recent items are recognized more quickly than earlier list items—we
called this a recency effect. Finally, repeated items are remembered better
than once presented items. Not surprisingly, all of these effects have per-
fect analogues in the literature on accuracy in recognition memory tasks
involving longer lists. The list length effect (in recognition memory) has
been known since Strong’s 1912 study. Although there is still much de-
bate as to the cause of this effect (See Murdock & Kahana, 1993a, 1993b;
Shiffrin et al. 1993), it is found in every type of memory test regardless
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of whether accuracy or RT is the dependent variable. The beneficial ef-
fects of recency are equally ubiquitous in the memory literature. Rubin
and Wenzel (1996) and Wixted and Ebbesen (1991) have shown that
across a wide range of tasks and materials response accuracy declines as
a power function of time, or the number of items intervening between
study and test (termed study-test lag). In short-term item recognition,
Monsell (1978) found a similar type of recency effect in RT data (see
figure 10.7). In a continuous recognition task, Hockley (1982) also found
dramatic recency effects in RT data.13 Clearly, recency, repetition, and
list length effects are fundamental properties of human memory. It is with
this in mind, that we can entertain the possibility that memories vary in
the strength of the cue-target match. The amount of information is then
a single dimension that has a single SAT function. More information re-
sults in faster and more accurate responses.

Unidimensional Strength Theory of Recognition (or Signal Detection
Theory)
Consider the familiar item-recognition task (e.g., Sternberg, 1966) as a
discrimination between two categories: items that were shown in the list
and those that were not. According to strength theory (Norman & Wick-
elgren, 1969) items vary along the dimension of information that distin-
guishes these two categories (this dimension is sometimes called memory
strength). A crucial assumption of the theory is the idea of a noisy system:
items within each category may vary greatly in their values along the
‘‘strength’’ dimension. This results in two strength distributions: a distri-
bution for list items and a distribution for nonlist items. Responses are
made based on the value of an item along this informational dimension.
If an item’s strength exceeds some criterion value, a positive response is
made; otherwise a negative response is made. This theory is considered
because it can provide a simple, unified account for both RT and accuracy
data in a broad range of recognition memory tasks (Murdock, 1985).
Although the model is overly simplistic, the basic ideas it encompasses
have become part of almost every current model of human memory (e.g.,
Hintzman, 1986; Metcalfe, 1982; Murdock, 1982). Strength theory is
the term used for the application of signal detection theory (SDT) to rec-
ognition memory tasks (Egan, 1958). In order to see how this theoretical
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framework can provide an account for both accuracy and RT data, the
basic elements of signal detection theory will be briefly introduced (for
a more thorough treatment, the reader is encouraged to consult Murdock,
1985).

In a categorization or recognition task, there may be different payoffs
associated with incorrectly classifying a nonlist item as a list item (a false
alarm) and for correctly classifying a list item as such (a hit). Such differ-
ential payoffs are easily modeled by assuming that the criterion can be
adjusted to meet the task demands. In a case where we want to avoid
false alarms at all costs, we set a high criterion. In a case where we want
to maximize hits, but where false alarms aren’t too bad, we set a low
criterion. Moving the criterion should not affect the discriminability of
the two distributions; only the relative numbers of hits and false alarms
will change.

A graph that plots hit rate against false alarm rate for different criteria
is called a receiver operating characteristic (ROC) curve. According to
strength theory, plotting the z-transformed hit rate versus the z-trans-
formed false alarm rate should result in a linear function. If the two distri-
butions have equal variance, the slope of the z-ROC curve should be 1.
In the recognition memory task we can vary the criterion by collecting
data on judgements of confidence. In this technique subjects are asked,
‘‘how confident are you that X was on the list?’’ A typical scale used for
confidence judgements is as follows:

23 22 21 1 2 3
High Low Low High

‘‘No’’ ‘‘Yes’’

We can now mimic a subject with high criterion by grouping confi-
dence judgments that are less than 3 into the ‘‘no’’ category, leaving only
confidence judgements of 3 in the ‘‘yes’’ category. Based on this grouping,
our imaginary conservative subject only responds ‘‘yes’’ when our real
subject responds ‘‘yes’’ with high confidence. Similarly, we can mimic a
subject who is slightly less conservative by grouping confidence judg-
ments that are less than 2 into the ‘‘no’’ category, leaving confidence judg-
ments of 2 and 3 in the ‘‘yes’’ category. Moving the criterion further
down, we reach the criterion of our real subject, with positive confidence
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judgments reflecting ‘‘yes’’ responses and negative confidence judgments
reflecting ‘‘no’’ responses. Finally, we can move our criterion yet further
down, all the way to the point were only a confidence judgement of -3
is in the ‘‘no’’ category, and all other confidence judgments are grouped
in the ‘‘yes’’ category. This hypothetical liberal subject will only withhold
a ‘‘yes’’ response when he/she is certain the item was not on the list. If
we plot hits against false alarms for each of these hypothetical subjects,
we can construct an ROC curve. At the most conservative end of the
spectrum, both the hit rate and the false alarm rate will be low because
the subject rarely makes ‘‘yes’’ responses. At the most liberal end of the
spectrum, both the hit and false alarm rates will be high because the sub-
ject almost always makes ‘‘yes’’ responses. The points representing hit
rate and false alarm rate for each criteria level (liberal to conservative)
traces out the bow-shaped ROC curve (See Swets, 1998 for background
information on ROC curves and their applications to some real world
problems). Studies of recognition memory (Koppell, 1977; Ratcliff,
McKoon, & Tindall, 1994; Yonelinas, 1997) have found that the z-ROC
curves are nearly linear but have slopes that are consistently less than 1
(around 0.8 in most studies). The linearity of the z-ROC functions is
consistent with the view that strengths of list and nonlist items are distrib-
uted normally. The finding that the slope of the z-ROC curve is less than
1 indicates that the variability in the strength of items’ representations
in memory is greater for list items than for non nonlist items (see Ratcliff,
McKoon, & Tindall, 1994)

Strength theory may be extended to deal with RT data in a fairly
straightforward manner. If we plot RT as a function of confidence judg-
ment values (which maps directly onto the distance from our yes-no crite-
rion), we find that as we approach the criterion from either direction, RTs
increase quite dramatically. According to the RT-distance hypothesis, RT
increases monotonically as the criterion is approached from either direc-
tion (Koppell, 1977; Murdock & Anderson, 1975). Murdock (1985) pro-
posed an extension of strength theory to handle RT data. This model has
been shown to fit data on list length effects and recency effects, as well
as RT distributions, in both the Sternberg (1966) subspan item-recogni-
tion task and in the supraspan study-test recognition paradigm. The
power of the RT-distance hypothesis is that it can be applied to any
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domain of signal detection theory. Maddox and Ashby (1996) incorpo-
rated the RT-distance hypothesis into the generalized recognition theory
of multidimensional categorization tasks (Ashby & Perrin, 1988). In this
manner they were able to simultaneously fit both accuracy and RT data
in a variety of categorization tasks.

The Diffusion Model
The diffusion model (Ratcliff, 1978; Ratcliff & Van-Zandt, submitted)
is an abstract mathematical model of any cognitive task that involves
choosing from among a number of sources of information. These tasks
include recognition memory as well as multidimensional perceptual dis-
crimination tasks. Consider an application of this model to the basic
Sternberg item recognition paradigm. A probe is compared in parallel
with a defined (but potentially large) set of items in memory (see figure
10.14). Each memory trace begins with a base level of activation. As time
progresses, the activation drifts, or diffuses, with a variable rate toward
either a lower or upper boundary. The model is self-terminating on a
match (i.e., if an item reaches its upper bound, the model produces a
positive response) and exhaustive on nonmatches (i.e., all items must
reach the lower bound before a negative response can be made). For ap-
propriately chosen parameter values, this model can produce many of
the major findings in the Sternberg paradigm—including both asymptotic
accuracy and RT distributions. In addition, it provides a reasonable ac-
count of SAT functions (McElree & Dosher, 1991). The diffusion model
has also been successfully applied to data on multielement comparisons
(Ratcliff, 1981) and choice reaction time14 (Ratcliff & Van-Zandt, sub-
mitted). One criticism of the diffusion model is that it does not explain the
basis of the processes it postulates. The model does not explain how items
are represented, how they are compared, what causes the variability in
drift rates, or even how the upper and lower boundaries are instantiated.

Nonetheless, a diffusion-type mechanism may be incorporated into
models that do make explicit assumptions about item comparison and
representation. Nosofsky and Palmeri (1997) extended Nosofsky’s
(1986) exemplar-based model of categorization to account for RTs in
speeded categorization tasks. In their model, exemplars of items and
their associated categories are stored as separate memory traces. A to-be-
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Figure 10.14
An illustration of the diffusion model applied to an item recognition task. The
process begins at the top of this figure with the encoding of the probe item. The
probe item is then compared, in parallel (i.e., all comparisons begin at the same
time), with each of the items in the memory set. Each comparison results in a
matching strength value that begins at a baseline level and then continuously in-
creases or decreases at a variable rate. A positive yes, response is made if any of
the comparisons reaches a match boundary; a negative, no, response is made if
all of the comparisons reach a nonmatch boundary. Model parameters include
the values of the match and nonmatch boundaries and the mean and variance of
the matching strength for each item in the memory set. (Adapted from figure 3,
Ratcliff, 1978.)
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classified probe item is simultaneously compared with each stored ex-
emplar. The likelihood of successful retrieval is determined jointly by the
strength of the exemplar in memory and its similarity to the probe item.
Each retrieved exemplar adds evidence in favor of the category with
which it has been associated. When a criterion of evidence is reached in
favor of a particular category, a response is made. Nosofsky and Palmeri
(1997) obtained good fits to both mean RT and to RT distributions.

Connectionist Models
During the last 15 years there has been a surge of interest in connectionist
models of memory. These models typically assume that a unit of memory
is represented by a pattern of activation across a large number of pro-
cessing units. The set of activation values across these units defines a vec-
tor in a multidimensional space. Given a sufficiently large number of
units, the same population of units can be used to store a multitude of
items. Interactions among processing units determine the storage of new
memories and the dynamics by which the model can reconstruct an entire
pattern given a partial input.

Connectionist models of memory and cognition can be subdivided into
three major classes: multiple-layer, feedforward models of recognition
and categorization (e.g., McClelland, 1979; Usher & McClelland, 1996);
autoassociative models of recognition and pattern completion (e.g.,
Chappell & Humphreys, 1994; Masson, 1995; Metcalfe, 1990); and re-
current, heteroassociative models of sequence memory (e.g., Cleere-
mans & McClelland, 1991). (See also chapter 8, this volume.)

These models provide mechanisms that give rise to the constructs that
are characterized abstractly within models such as the diffusion model
or strength theory. In one of the earliest applications of a connectionist
model to accuracy and RT data in human memory, Anderson (1973)
showed how a simple distributed memory model could account for the
basic linear RT functions obtained by Sternberg (1966). Further efforts
to model the Sternberg task employed nonlinear models with multiple
layers (e.g., McClelland, 1979).

Usher and McClelland (1996) propose a two-layer network model for
choice reaction time tasks. The first layer represents the stimulus as a
pattern of activation across a set of units. These units send their activation
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through weighted paths to a second, decision, layer with N units (one
for each possible choice). The Usher and McClelland model proposes
both recurrent excitatory connections and mutual inhibitory connections
between the units in the decision layer. The interplay between the excit-
atory and inhibitory mechanisms results in a generalized diffusion toward
one of two decision bounds. This model encompasses the diffusion model
as a special case while providing an even better account of SAT data.

Although the Usher and McClelland model is appropriate for choice
reaction time tasks, it cannot do pattern reconstruction or serial recall
tasks. To do these tasks, a class of connectionist models known as recur-
rent, or autoassociative, neural networks have been developed. These
models allow for associations between an item and itself (autoassocia-
tion) as well as associations among different items (heteroassociations).
They follow a simple learning principle called the Hebb rule (after
Hebb’s, 1949, hypothesis about synaptic plasticity). When two units are
coactive the connection between them is strengthened, and when two
units have uncorrelated activities the connection between them is weak-
ened. These principles are related to the biological mechanisms of long-
term potentiation and long-term depression (Brown & Chattarji, 1995;
McNaughton & Morris, 1987; Treves & Rolls, 1994). The network
evolves dynamically according to a simple model of neural function (usu-
ally a derivative of the classic McCulloch & Pitts, 1943, model). Typically,
the activity of a unit is a monotonic function of the weighted sum of the
input to that unit.

The Hopfield (1982) model is an example of a simple attractor neural
network capable of mimicking human RT and accuracy data in priming
experiments (Masson, 1995). Chappell and Humphreys (1994) expanded
this approach to explain a number of phenomena in recognition and re-
call memory tasks. Although there has been some criticism of neural net-
work models of RTs (Ratcliff & Van-Zandt, 1996), these models provide
a natural account of both accuracy and RT data across a broad range of
cognitive tasks.

Models of accuracy and RT data often assume that a common dimen-
sion of information underlies both accuracy and RT judgments. Few
models have tackled the difficult problem of fitting SAT functions in a
wide range of tasks. The two models that have been largely successful
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in accounting for SAT data assume variability in the rate with which
information continuously accrues (e.g., Ratcliff, 1978; Usher & McClel-
land, 1996).15

Conclusions: Are Accuracy and RT Data Two Sides of the Same Coin?

Superficially, it appears that our review of theory and data concerning
accuracy and RT in human memory supports the view that these two
measures may reflect a single underlying dimension of information. How-
ever, this conclusion leaves us somewhat uneasy. To further examine this
question, we have set out to find a few examples of cases in the literature
where accuracy and RT have not provided comparable answers.

Sometimes variables that have significant effects on accuracy do not
affect RTs (MacLeod & Nelson, 1984). Sternberg (1969b) reported an
experiment in which subjects studied a list of items presented either once,
twice, or three times. After the list presentation, a single item was pre-
sented as a cue to recall the next item in the list. As with the standard
item-recognition task, RTs in this task increased linearly with list length,
but interestingly, RT was not affected by the number of times the list was
presented. In contrast, error rates for the longest list (six items) were quite
high (23%) when the list was only presented once, but less than 5% when
the list was presented three times. In this study, accuracy differences were
not reflected in RT data.

There are fewer cases in the literature where a variable has a significant
effect on RT data but no discernible effect on response accuracy (when
accuracy is far from ceiling). Sanders, Whitaker, & Cofer (1974) found
that in a recognition task, subjects did not suffer from associative interfer-
ence when measured using accuracy but showed substantial interference
when RT was examined. Subjects took as many trials to learn C-D word
pairs after learning A-B pairs as they did after learning A-D pairs. In con-
trast, RTswere significantlyslowerwhentestedon theA-D list, presumably
because of interference from the A-B pairs learned in the first list.

Santee & Egeth (1982; see also Mordkoff & Egeth, 1993) found that
accuracy and latency were affected quite differently from each other in
a letter recognition task. Perceptual interference caused by displaying tar-
gets very briefly affected accuracy at detection but not latency. In con-
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trast, response competition caused by having to respond to a given target
in the face of competing information from another target affected latency
of responses but not accuracy.

In a recent study examining accuracy and RT in various types of asso-
ciative recall tasks, Kahana (1998) found that the order in which a pair
of items was studied has no significant effect on accuracy, yet forward
recall was significantly faster than backward recall (ART . 400 ms). Ac-
curacy for forward recall was 87.7%, and for backward recall it was
85.1% (p . .10). This result makes sense if one assumes that an associa-
tion is a single integrated unit of information that is unpacked in the
order in which it was encoded.

Perhaps the most striking example comes from a judgment of recency
(JOR) task. In this task, subjects are presented with a short list of items
(usually words or letters). Immediately after list presentation, two items
are presented and the subject must select the more recent list item. For
example, suppose the list consists of items XTLVDGBNW and the probe
items are V and N. In this case, the subject might correctly select N as
the more recent list item. Muter (1979) and Hacker (1980) independently
discovered that RTs in this task are dependent only on the position of
the more recent item and not on the relative recency of the two items.
From a strength-type theory, we would expect that the difference in the
recency of the two items would affect both accuracy and RT data. Data
from Hacker’s study are shown in figure 10.15. The peculiar finding that
the position of the less recent item does not affect RT led Hacker (1980)
to propose a self-terminating, backward serial-scanning model of this task.
If we scan backward from the end of the list, it will take the same time
to find the more recent item regardless of the position of the less recent
item (cf. Murdock’s, 1974, conveyer belt model of recognition memory).

McElree and Dosher (1993) performed a SAT analysis of the Muter-
Hacker JOR task. They succeeded in replicating the Muter-Hacker find-
ing that mean RTs are only affected by the recency of the more recent
probe (and not the distance between the two items). The SAT study of
the same task showed that there is an effect of the relative recency of the
two probe items. Specifically, the rate of approach to asymptote was more
rapid as the less recent probe was more distant. In contrast, the more
recent probe had the expected effects on both the intercept and the
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Figure 10.15
Response accuracy and latency in a judgment of recency task (Hacker, 1980).
Mean correct RT is strongly influenced by the recency of the more recent probe
item, but is unaffected by the recency of the less recent probe item. These data
conflict with the reasonable prediction that the relative recency of the two items
influences mean RT. The same basic pattern of data has also been obtained by
Muter (1979), Hockley (1984), and McElree & Dosher (1993).

asymptote of the SAT functions. This SAT approach clearly demonstrated
that the relative lag of the first list item, which did not affect mean RTs,
did have a significant effect on processing rate.

Additional studies using SAT techniques have begun to provide conver-
gent evidence against the idea that memories vary along a single dimen-
sion. Rather, SAT studies of human memory have lent support to the
view that different types of information are represented in memory (e.g.,
Murdock, 1974; Underwood, 1983). Gronlund and Ratcliff (1989) com-
pared single-item recognition with associative recognition (recognition
that two items were paired together in a list). They found that item infor-
mation became available before associative information. Ratcliff and
McKoon (1989) and Dosher (1984) found that preexperimental relations
among items influenced recognition of word pairs or sentences early in
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processing and that the necessary contextual information did not become
available until later stages of processing. Hintzman and Curran (1994)
found evidence that item recognition judgments are influenced by a fast-
acting familiarity mechanism followed by a slower recall-like retrieval
process (c.f., Atkinson & Juola, 1973).

All of these results support the cognitive idea that multiple kinds of
information provide us with our ‘‘memory strength.’’ In particular, the
range of studies reported converge on the need to distinguish between
information on item familiarity (the closest idea to the traditional notion
of strength), experimentally formed associations between items, and con-
textual information that binds items and associations to a particular time
and place. These different kinds of information are often characterized
by different SAT functions. If several different types of information, or
memory processes, mediate performance in a task, the accuracy-RT rela-
tion would have to be identical for each process in order for accuracy
and RT to be measuring the same thing. If each process has a different
accuracy-RT relation, it is good cause for studying the effects of experi-
mental variables on both accuracy and RT data.

In recent years the evidence for the involvement multiple processes and
types of information in memory tasks has been accumulating. More infor-
mation implies better accuracy and shorter RT, making accuracy and RT
measures highly correlated. But the results of SAT studies have shown
that the precise pattern of accuracy-RT effects may teach us a great deal
about memory processes. In addressing the question posed in the begin-
ning of this chapter, accuracy and RT cannot be two sides of the same
coin unless the cognitive process of interest is a single operation acting
on a single type of information. Consequently, consideration of both ac-
curacy and RT data is often critical in distinguishing theories of cognition,
and the use of only one of these measures may provide a skewed interpre-
tation of the phenomena of interest.

Notes

1. See, for example, Gronlund & Ratcliff (1989); Hintzman & Curran (1994);
Kounios, Osman, & Meyer (1987); McElree (1996); McElree & Dosher (1989,
1993); Meyer, Irwin, Osman & Kounios (1988); Ratcliff & McKoon (1989);
Ratcliff & Van Zandt (1996); and Rohrer & Wixted (1994).
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2. In these experiments lists are usually made up of between 15 and 40 randomly
chosen words. The advantage in recall is for the first 3 to 4 words and the last
6 to 8 words. The size of the recency effect does not depend on the length of the
list, the presentation rate, or other variables that generally effect overall memory
(Murdock, 1962).

3. Latent constructs are variables (often representing mental processes) that are
not directly observed but whose existence is inferred from the data. The idea of
association is a latent construct, as is intelligence or morale.

4. See, for example, Brown, Conover, Flores, & Goodman (1991); Cooke,
Durso, & Shvaneveldt (1986); and Romney, Brewer, & Batchelder (1993). See
Shuell (1969) for a review of the earlier literature.

5. In rapid serial visual presentation (RSVP) of sentences, subjects are impaired
at recalling the second presentation of a repeated element. This is known as repeti-
tion blindness (Kanwisher, 1987). There is some debate as to how repetition
blindness is related to the Ranschburg effect: Kanwisher (1987) maintains that
the two are distinct phenomena; however, Fagot and Pashler (1995) suggest that
the two phenomena may be closely related (see also Whittlesea, et al., 1996).

6. The reader may note that in free recall, performance is best at the end of the
list. However, in serial or ordered recall, performance is best at the beginning of
the list. This makes sense because subjects must start recalling at the beginning
in serial recall but are free to recall from the end in free recall.

7. In the recognition memory literature, investigators often call positive probes
old items and negative probes new items.

8. see Murdock (1985) for an attempt to fit such a model to data from the Stern-
berg task.

9. See Murdock & Walker (1969).

10. For opposing views see Baddeley & Hitch (1974, 1977); Crowder (1982)
and Greene (1986, 1992).

11. For an interesting alternative view see Sternberg (1998b).

12. See, for example, Loftus (1985); Loftus & Bell (1975); Loftus, Busey, &
Senders (1993); Loftus, Duncan, & Gehrig (1992); Loftus, Johnson, & Shima-
mura (1985); Reinitz (1990); Reinitz, Wright, & Loftus (1989); Rumelhart
(1970); Shibuya & Bundeson (1988); and Townsend (1981).

13. In a continuous recognition task, there is no differentiation between the study
and test phases. Stimuli are presented one by one, and as each stimulus appears,
subjects respond yes if they think they have seen it before and no if they think
it is a new word.

14. In a choice reaction time task a stimulus is presented (e.g., a row of asterisks
on a computer screen) and subjects are supposed to make one of several discrete
responses according to the qualities of the stimulus (e.g., many or few asterisks).
Although a recognition memory task is a kind of two-choice RT task (was the
presented word on the list, yes or no?), the term choice reaction time is used to
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refer to judgments concerning a stimulus that is present rather than judgments
concerning one’s memory for a stimulus.

15. Hanes and Schall (1996) have found an interesting parallel to the variable
rate assumption in single-cell studies of the rhesus monkey.
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