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Abstract1

Neural activity associated with successful cognition appears as a tilt in the power spectrum of2

the local field potential, wherein increases in high-frequency power accompany decreases in low3

frequency power. Whereas this pattern has been shown in a wide range of memory tasks, it is4

unknown whether this increased spectral tilt reflects underlying memory-specific processes or5

rather a domain-general index of task engagement. To address the question of whether increased6

spectral tilt reflects increased attention to a cognitive task, we collected intracranial recordings7

from three hundred thirty neurosurgical patients as they performed a mathematical problem8

solving task. We used a mathematical problem solving task, because it allowed us to decouple9

task-specific processes with domain-general attention in a novel way. Using a statistical model to10

control for inherent problem complexity, we classified individual math problems based on whether11

a subject performed faster than predicted (high-attention or fast) or slower than predicted (low-12

attention, or slow) based on residual response times. In contrast to the domain-general attentional13

account, problems that took longer than predicted produced stronger evidence for the spectral14

tilt: widespread increases in high frequency (31–180 Hz) power and decreases in low frequency15

(3–17 Hz) power across frontal, temporal, and parietal cortices. The pattern emerged early within16

each trial and was sustained throughout the response period but was not observed in the medial17

temporal lobe. The data show that engaging in mathematical problem solving leads to a distributed18

spectral tilt pattern, even when accounting for variability in performance driven by the arithmetic19

demands of the problems themselves, and suggest that broadband changes in the power spectrum20

reflect an index of information processing in the brain beyond simple attention to the cognitive21

task.22
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Introduction23

In the domain of episodic memory, extensive prior work using both intracranial and scalp elec-24

troencephalography (EEG), as well as magnetoencephalography (MEG), has shown that neural25

activity during memory encoding exhibits broadband changes in power that correlate with mem-26

ory performance (Burke, Ramayya, & Kahana, 2015). Typically, increases in high-frequency activity27

(HFA, >30 Hz) are associated with encoding of information that is later remembered compared28

to information that is later forgotten (Long, Burke, & Kahana, 2014; Burke, Long, et al., 2014;29

Osipova et al., 2006; Sederberg et al., 2007; Hanslmayr, Spitzer, & Bauml, 2009; Gruber, Tsivilis,30

Montaldi, & Müller, 2004). In contrast, low-frequency activity (LFA, <30 Hz) often decreases31

during episodic memory processing (Burke, Long, et al., 2014; Long et al., 2014; Guderian, Schott,32

Richardson-Klavehn, & Duzel, 2009; Staudigl & Hanslmayr, 2013; Lega, Jacobs, & Kahana, 2012;33

Fell, Ludowig, Rosburg, Axmacher, & Elger, 2008; Sederberg et al., 2007), although some studies34

have reported increases in the theta (4–8 Hz) range (Osipova et al., 2006; Hanslmayr et al., 2011;35

Klimesch, Doppelmayr, Russegger, & Pachinger, 1996; Burgess & Gruzelier, 2000).36

The complementary increased HFA and decreased LFA (spectral tilt (Burke et al., 2015)) is37

characteristic of both memory encoding and retrieval (Burke, Sharan, et al., 2014; Kragel et al.,38

2017; Long et al., 2017), is observed across a range of tasks including paired associates recall39

(Greenberg, Burke, Haque, Kahana, & Zaghloul, 2015), and manifests in the distributed patterns40

of functional connectivity observed during episodic memory encoding and retrieval (Burke et al.,41

2013; Solomon et al., 2017). In spite of the apparent ubiquity of this broadband pattern, relatively42

little is known about its specificity for episodic memory processes. One interpretation is that the43

spectral tilt reflects engagement of contextually-mediated encoding and retrieval processes that44

are the hallmark of episodic memory (Tulving, 1983; Cohen & Eichenbaum, 1993). Consistent with45

this account, direct brain stimulation has been shown to simultaneously increase evidence for the46

spectral tilt and memory performance in free recall (Ezzyat et al., 2017, 2018). This account is also47

consistent with models proposing that HFA reflects a marker of neural information processing that48

can reveal with high spatial and temporal resolution the brain networks engaged in a particular49

cognitive task (Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012; Burke et al., 2015).50

However, an alternative account would propose that increased evidence for the spectral tilt51
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could reflect a more global mechanism of orientation to the task, as opposed to specific information52

processing operations beyond baseline attention. Consistent with this idea, prior work has shown53

that attention modulates HFA (Jung et al., 2008); that task engagement compared to rest leads to a54

decrease in the spectral tilt in the default mode network (Miller, Weaver, & Ojemann, 2009); and55

that the spectral tilt is similarly increased during both memory encoding and retrieval (Kragel et56

al., 2017). In a typical experimental contrast comparing trials in which a subject is presumed to57

be engaged in the cognitive process of interest with trials in which the subject is not (e.g. correct/58

incorrect), both the task-specific information processing model and the attentional model predict59

increased evidence for the spectral tilt. Thus, both the process-specific and attentional accounts60

predict that greater engagement in the cognitive task should lead to increased evidence for the61

spectral tilt, leaving open the question of which mechanism is more likely to drive the spectral tilt62

pattern.63

Here, we aim to di↵erentiate these two accounts using a mathematical problem solving task.64

Mathematical cognition is a skill that is included as an essential component of neuropsychological65

assessments and is related to a diverse array of economic, social, and psychological outcomes66

(Parsons & Bynner, 2005). It is also a domain in which there are inherent factors that correlate67

with problem di�culty and behavioral performance. For problems of mental arithmetic, factors68

such as the total sum and the presence of repeated digit operands are inherent to the problems69

themselves and a↵ect demands on cognitive operations like executive function that are critical to70

task performance (Ashcraft, 1992).71

To use a mathematical problem solving task to address the question of whether increased72

spectral tilt reflects increased attention, we collected intracranial recordings from three hundred73

thirty neurosurgical patients, as they performed a series of mental arithmetic problems. Taking74

advantage of the size of the dataset, we built a novel statistical model to account for inherent75

problem complexity on each trial and then classified individual problems based on whether the76

subject’s residual response time was faster than predicted (high-attention or fast) or slower than77

predicted (low-attention, or slow). After accounting for problem complexity, the attentional account78

would predict greater evidence for the spectral tilt for problems in which the subject performed79

faster than predicted by the model; in contrast, the task-related information processing account80

would predict increased evidence for the spectral tilt for problems in which the subject performed81
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slower than expected (but nonetheless correctly responded). We find that di�cult mathematical82

problem solving is associated with simultaneously increased HFA and decreased LFA, consistent83

with an account of the spectral tilt that is domain-general and that reflects neural information84

processing. We observed this pattern across broad areas of parietal, temporal, and frontal cortex,85

areas traditionally linked to mathematical cognition (Grabner, Ansari, et al., 2009; Daitch et al.,86

2016; Dehaene, Piazza, Pinel, & Cohen, 2003), but not in the hippocampus and medial temporal87

lobes, regions critical to the encoding and retrieval of episodic memories (Eichenbaum, 2000).88
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Materials and Methods89

Participants Three hundred thirty patients (151 females; mean age = 36 years, range 15-64 years)90

receiving clinical treatment for medication-resistant epilepsy were recruited to participate in this91

study. All patients underwent a surgical procedure in which intracranial electrodes were im-92

planted either subdurally on the cortical surface, deep within the brain parenchyma, or both.93

In each case, electrode placement was determined by the clinical team. Subdural electrode con-94

tacts were arranged in strip or grid configurations with 10 mm inter-contact spacing, while depth95

electrodes utilized 5-10 mm inter-contact spacing. Electrophysiological data were collected as96

part of a multi-center collaboration at the following institutions: Dartmouth-Hitchcock Medical97

Center (Hanover, NH), Emory University Hospital (Atlanta, GA), Hospital of the University of98

Pennsylvania (Philadelphia, PA), Mayo Clinic (Rochester, MN), Thomas Je↵erson University Hos-99

pital (Philadelphia, PA), Columbia University Medial Center (New York, NY), University of Texas100

Southwestern Medical Center (Dallas, TX), National Institutes of Health (Bethesda, MD), Uni-101

versity of Washington Medical Center (Seattle, WA), and Freiburg University Hospital (Freiburg,102

Germany). The institutional review board at each institution approved the research protocol, and103

informed consent was obtained from the participant or the participant’s guardian.104

Experimental design Patients participated in a mathematical problem solving task, in which they105

were instructed to rapidly complete a series of mental arithmetic problems. The task paradigm,106

developed using the Python Experiment-Programming Library (PyEPL (Geller, Schleifer, Seder-107

berg, Jacobs, & Kahana, 2007)), was presented to participants on a laptop at the bedside, and was108

administered together with a delayed free recall task. The recall task involved having participants109

encode a list of words with subsequent recall of those words after a short delay. Participants110

performed the arithmetic task between the encoding and recall phases of the delayed free recall111

task. The memory task is not the focus of this report and will not be further discussed (Fig. 1A).112

Each mathematical problem solving block was self-paced, which allowed participants to com-113

plete as many trials as possible; in one version of the task the interval was 20 seconds long (n =114

227), while in the other the length was 25 seconds (n = 103). The interval length did not vary115

within-subject. On each trial, participants were presented with an arithmetic equation in the form116
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of A + B + C = ??, where A, B, and C were randomly selected integers ranging from 1 to 9 (Fig.117

1A). The participants were asked to input their answer using the numbers on the laptop keyboard118

and press Enter to log their response. The equation remained visible on the screen until a response119

was entered on the keypad, which immediately prompted the presentation of the subsequent trial.120

There was no limit placed on response time for a given trial, and participants were able to finish121

a trial once the time overall limit for the interval was reached. Each session consisted of up to122

25 blocks of the arithmetic task. On average, subjects participated in two sessions (range: 1-5123

sessions). We recorded accuracy and response times for each problem.124

Behavioral model Our primary goal was to characterize the broadband changes in power that125

are associated with cognitively demanding mathematical problem solving, independent of the126

inherent complexity of the problem. To identify cognitively demanding problems, we constructed127

a linear regression model using aggregate subject data fit across all participants to predict their128

response time to each equation (Fig. 1C, left). We selected five factors for the model: (1) the sum129

of the digits, (2) presence of triplet digits (i.e. 3+3+3), (3) existence of any two digits with a sum of130

10 (i.e. 7+3+C), (4) presence of two repeated digits (i.e. 3+3+C), and (5) sum being even or odd.131

These factors were chosen based on previously identified determinants of mathematical di�culty132

in the literature (Ashcraft, 1992) combined with distinct trends observed within our data. We also133

included separate confound regressors to model the mean response time for each subject. We used134

this model to account for baseline di↵erences in problem di�culty in order to determine whether135

a participant spent more or less time solving a given problem than would be predicted by the five136

factors. Due to the large subject population, the same model was applied to all subjects without137

holding out individual subject data. We computed residual response times as the di↵erence138

between a participants’ actual response time during a trial and the trial’s predicted response time;139

the resulting distribution of residual times for an individual subject was then separated based140

on the median residual, whereby slow (or low-attention) trials were defined as greater than the141

median and fast (or high-attention) trials were less than the median (Fig. 1C, right).142

Intracranial recordings Intracranial EEG data were obtained at each clinical site using recording143

systems from a variety of manufacturers, including Bio-Logic, Blackrock, DeltaMed, Grass Tele-144
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factor, Medtronic, Nihon-Kohden, Natus XLTek EMU128, Nicolet. Signals were sampled at 500,145

512, 1000, 1024, or 2000 Hz based on the particular hardware configuration and discretion of the146

clinical team at each participating hospital. Recorded data were referenced to a common contact147

placed either intracranially, on the scalp, or on the mastoid process. A fourth order 2 Hz stop-band148

Butterworth notch filter was applied at 60 Hz to eliminate electrical line noise. To minimize e↵ects149

from volume conduction between intracranial contacts and confounding interactions with the150

reference signal, a bipolar referencing montage was employed (Nunez & Srinivasan, 2006; Burke,151

Long, et al., 2014). Di↵erences in signal between immediately adjacent contacts on grid, strip, and152

depth electrodes were calculated, creating new virtual electrodes at the midpoint between each153

contact pair (Burke et al., 2013).154

Anatomical localization Anatomical localization of cortical surface (i.e. grids, strips) and depth155

electrodes was accomplished using independent image processing pathways. For surface electrode156

localization, post-implantation computed tomography (CT) images were coregistered with pre-157

surgical T1- or T2-weighted structural MRI scans with Advanced Normalization Tools (Avants,158

Epstein, Grossman, & Gee, 2008). A subset of subjects (n = 103) had post-implantation and159

structural scans coregistered using FMRIB’s linear image registration tool (Jenkinson, Bannister,160

Brady, & Smith, 2002). Individualized whole-brain cortical surfaces were then reconstructed161

from pre-surgical T1-weighted MRI scans using Freesurfer (Fischl et al., 2004), and electrode162

centroids were subsequently projected onto the cortical surface using an energy minimization163

algorithm (Dykstra et al., 2012). In order to cluster electrodes based on anatomical location,164

groups of segmented areas defined by the Desikan-Killiany atlas (Desikan et al., 2006) were165

designated as regions of interest (ROI). The following regions of interest were created from the166

specified segmented areas: superior frontal gyrus (superior frontal region), middle frontal gyrus167

(caudal middle frontal, rostral middle frontal regions), inferior frontal gyrus (pars opercularis, pars168

orbitalis, pars triangularis), inferior temporal gyrus, middle temporal gyrus, superior temporal169

gyrus, inferior parietal cortex (inferior parietal, supramaginal regions), superior parietal cortex170

(superior parietal, precuneus regions), and occipital cortex (lateral occipital region, lingual, cuneus,171

pericalcarine).172

For localization of depth electrodes in hippocampus and medial temporal lobe (MTL), a neu-173
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roradiologist experienced in neuroanatomical localization determined each electrode’s position174

using post-implantation CT and MRI scans. An additional processing procedure was imple-175

mented prior to neuroradiology localization for a subset of subjects (n= 227). In this step, regions176

were automatically labeled on pre-implantation T2-weighted MRI scans using the automatic seg-177

mentation of hippocampal subfields (ASHS) multi-atlas segmentation method (Yushkevich et al.,178

2015). All cortical and subcortical regions included electrodes implanted in both hemispheres.179

Table 1 details the electrode coverage in each ROI across all collective subjects.180

Spectral power We applied the Morlet wavelet transform (wave number = 5; 8 frequencies181

logarithmically-spaced between 3 and 180 Hz) to all bipolar electrode EEG signals from 1,000 ms182

preceding math problem presentation to 1,000 ms following user input. An additional 1,000 ms183

bu↵er was included on both sides of the data segments and was subsequently discarded following184

the wavelet convolution to minimize edge artifacts. The resulting wavelet power estimates were185

then log-transformed and downsampled to 100 Hz. We normalized the resulting log-power traces186

using a z-transform across trials, separately within each wavelet frequency, and separately for187

trials within each session.188

Because we were interested in examining how endogenous neural activity reflects neural189

information processing during successful mathematical problem solving, we excluded incorrect190

trials and trials with a response time > 30 seconds. We required a minimum of 50 such arithmetic191

trials to include a participant in the analysis. For the ROI analysis shown in Fig. 2A-B, continuous192

power traces for each subject were averaged across trials, electrodes within the ROI, and the entire193

response interval to yield a single power value for each trial condition (i.e. fast, slow), ROI, and194

frequency combination. This approach created a distribution of average power values across195

subjects in a particular region and frequency. For each ROI, we included any subject with at least196

one electrode localized to the ROI.197

For analyses of the timecourse of the spectral tilt (e.g. as shown in Fig. 2C), we divided198

the response period for each trial into 10 non-overlapping intervals in order to account for the199

variable duration response times across trials. Spectral power within each interval was averaged to200

normalize the length of the response period, thus enabling averaging across trials. To approximate201

the time post-stimulus presentation that each interval represents, an average time for each interval202
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was calculated for every subject, and the median time across subjects was displayed in lieu of the203

interval number. This method allowed for the characterization of broad shifts in power throughout204

the entire calculation process.205

Statistical analysis We used a two-sample within-subject t-test to derive a measure of e↵ect206

size for the comparison of spectral power between slow and fast conditions for each region and207

frequency. We then performed a one-sample t-test on the distribution of t-statistics across subjects208

to assess for the existence of a group-level di↵erence between mathematical problem solving209

conditions. We used false discovery rate (FDR) to correct for multiple comparisons (Benjamini &210

Hochberg, 1995) with a significance level of q = 0.05. For Fig. 2A-B, data were corrected for all211

regions and frequencies, whereas for Fig. 2C, data were corrected across each time course.212
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Results213

Behavioral results and model214

On average, participants completed a total of 197.56 ± 12.08 (mean ± SEM) trials of the task. To215

assess performance on the task, we calculated each participant‘s overall accuracy (mean accuracy=216

93.0± 6.9%). Only participants with higher than 50 percent accuracy and greater than 50 arithmetic217

trials were included in further analyses. 294 participants met these criteria, and therefore, 36218

participants were excluded. We used response time on correct trials as our dependent measure219

for the behavioral model, and first sought to visualize how participant response time is a↵ected220

by the total problem sum, a factor that has been previously identified as contributing to baseline221

problem di�culty (Ashcraft, 1992). A distinct relationship is visible, whereby increasing the total222

sum of digits results in longer response times and decreased accuracy (Fig 1B). This trend becomes223

readily apparent at larger sums, when trial combinations begin to exhibit a left upward shift of low224

accuracy and long response time apart from the dominant cluster with high accuracy and short225

response times.226

Since most participants could successfully perform this task with high accuracy, we only227

analyzed correct trials and used response time to operationalize the information processing load228

required for a given problem. Fig. 1D shows the average response time for each trial combination229

of digits across all subjects, which illustrates the e↵ect of problem sum in the general progression230

of warm colors (longer response times) towards the lower right corner of each subplot as well as231

across the entire panel, where the total sum of the digits is larger. Other patterns, such as problems232

in which three digits are identical (i.e. 9+9+9) or two digits sum to 10 (i.e. 5+5+C), show response233

times are noticeably shorter (cool colors) than would be predicted solely based on problem sum.234

Having observed apparent relationships between arithmetic characteristics inherent to a given235

problem and average response times, we developed a linear regression model using aggregated236

subject data to predict participant response times based on properties of the problems. The model237

was constructed using five features of the trial equation (see Methods) that we hypothesized238

would be related to cognitive demand during mathematical problem solving and would therefore239

predict response times (Fig. 1C). Fitting the model across subjects yielded an r-squared value of240

0.49. Normalized �-coe�cients for each factor included: the sum of equation digits (�1 = 6.70),241
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presence of an even solution (�2 = -0.06), existence of any two digits with a sum of ten (�3 = -242

1.15), presence of repeated digits (�4 = -0.63), and presence of triplet digits (�5 = -0.39). Using those243

model coe�cients, we predicted response times for each possible trial equation, which are depicted244

in Fig. 1E. Overall, the model’s predictions exhibit similar trends to the average response times245

shown in Fig. 1D, which suggests that our model adequately identifies response time variability246

associated with measures of trial-level information processing.247

ROI analysis of spectral power changes during demanding arithmetic248

We first characterized broadband changes in spectral power averaged over the response interval249

to determine how changes in the spectral tilt relate to variability in neural information process-250

ing during mathematical problem solving. This analysis tested the hypothesis that problems251

that are more cognitively demanding evoke greater evidence for the spectral tilt. We first com-252

pared trials that were above or below the median response time for each subject (Fig. 2A) before253

subsequently splitting trials based on whether the actual response time was above or below the254

predicted response time when accounting for inherent problem complexity with our behavioral255

model (Fig. 2B). We hypothesized that in both cases trials with longer response times were more256

cognitively demanding, and would therefore be associated with greater evidence for the spectral257

tilt. This analysis was also designed to show whether modeling inherent problem di�culty would258

attenuate the spectral tilt, as predicted by a process-specific account, or would lead to either no259

e↵ect or an increase in evidence for the spectral tilt, as predicted by a domain-general account.260

We assessed the di↵erence in spectral power at each frequency for each electrode within subject261

by calculating a t-statistic comparing slow and fast trials; we then averaged t-statistics across262

electrodes in each ROI (across hemispheres), before assessing the e↵ects across-subjects (one-263

sample t-test vs. 0). Low-frequency power (LFA; 3–17 Hz) during slow trials reliably decreased264

relative to fast trials, most prominently within the frontal cortex but also observed within areas265

of the temporal and parietal cortices. At the same time, the frontal lobe (including inferior and266

middle frontal gyri; IFG, MFG) displayed broadband increases in high frequency power (31–180267

Hz); other areas including inferior temporal gyrus (ITG), middle temporal gyrus (MTG), and268

inferior parietal cortex (IPC) demonstrated lower magnitude increases that were not significant269

12



when correcting for multiple comparisons. The inflection point on the frequency spectrum at270

which the power di↵erence shifted from negative to positive occurred between 17 and 31 Hz,271

consistent with previous findings observed during episodic memory (Burke, Long, et al., 2014).272

The IFG and MFG regions showed strongest evidence for the spectral tilt, consistent with a role273

in domain-general manipulation and organization of information in working memory (Owen et274

al., 1998; Blumenfeld & Ranganath, 2006; Kong et al., 2005; Ischebeck, Zamarian, Egger, Schocke,275

& Delazer, 2007). In contrast, the occipital cortex (OC), which is responsible for similar visual276

processing during both trial types, does not exhibit a spectral tilt.277

We next reclassified trials based on our behavioral model of intrinsic mathematical problem278

di�culty, to determine whether controlling for problem-level complexity would eliminate the279

spectral tilt pattern we observed when using raw response time to bin trials. We used the model to280

predict response times for each trial and then split trials into slow and fast conditions based on the281

residuals (see Methods). Using the same analysis from Fig. 2A, we found that controlling for trial-282

level variability led to a stronger spectral tilt, in contrast to the prediction of the process specific283

model and consistent with a domain general account (Fig. 2B). ITG, MTG, and IPC all showed284

significant low-frequency power decreases between 3–17 Hz, along with significant high-frequency285

power increases from 56–180 Hz. The increase in high-frequency power within the superior frontal286

gyrus (SFG) also reached significance at all frequencies between 56–180 Hz. Furthermore, the287

decrease in low-frequency power was more widespread and encompassed all ROIs including the288

hippocampus and medial temporal lobes.289

Timecourse of spectral power changes in arithmetic290

Having characterized the aggregate pattern of neural activity across the brain during cognitively291

demanding problem solving, we next investigated the temporal dynamics of the spectral tilt292

across the response period. To align trials with varying response times, we first performed a293

vincentization of the response period, whereby the response period for each trial was divided294

into 10 intervals and average power computed within each interval. This allows us to statistically295

compare (across trials and subjects) intervals that were matched for their relative within-response296

period position. Fig. 2C shows the average time course of activity in regions that demonstrated297
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a significant decrease in LFA combined with a significant increase in HFA in Fig. 2B. The most298

significant response was observed in frontal lobe ROIs (IFG and MFG), where all of the high-299

frequencies (warm colors) exhibited significantly increased power while the low-frequencies (cool300

colors) exhibited significantly decreased power that persisted from stimulus presentation to subject301

response.302

In the temporal lobes, the ITG showed a late increase in high-frequency power and reduction303

in low-frequency power compared to the MTG, which showed two high-frequency power peaks304

and a decrease in low-frequency power that was sustained for much of the response period. In305

contrast, IPC showed an initial high-frequency peak in the first half of the response period along306

with significantly reduced low-frequency power. Taken together, these data suggest that cognitive307

demand modulates the spectral tilt most strongly in frontal regions in a way that is consistent308

across the response period, suggesting sustained engagement of neural activity in these areas309

during di�cult mathematical problem solving.310
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Discussion311

We evaluated the link between the spectral tilt and cognitive demand in the context of a mathemat-312

ical problem solving task by recording intracranial EEG from cortical and subcortical electrodes313

implanted in a large sample of neurosurgical patients. By analyzing a large dataset to achieve ex-314

tensive electrode coverage, we could evaluate whole-brain spectral dynamics during mathematical315

problem solving. After controlling for problem di�culty, problems that subjects answered cor-316

rectly but slower than predicted by the model demonstrated greater evidence for the spectral tilt,317

most strongly in areas of the lateral frontal lobe. The data show that neural information processing318

during mathematical problem solving exhibits similar biomarkers of successful performance as319

found in other domains, such as episodic memory encoding and retrieval, in a way that is inconsis-320

tent with an attention-based account of the spectral tilt. The data suggest that the spectral tilt may321

reflect the presence of desirable di�culties that reflect states of information processing associated322

with successful cognition.323

Electrophysiological and cognitive basis of the spectral tilt324

There is substantial evidence that broadband high-frequency power in the local field potential can325

be used to index unit firing of the underlying neural population (Lachaux et al., 2012; Merker,326

2013) that is correlated with the blood-oxygen level dependent (BOLD) fMRI response (Conner,327

Ellmore, Pieters, DiSano, & Tandon, 2011; Winawer et al., 2013) and multi-unit activity (Manning,328

Jacobs, Fried, & Kahana, 2009). For example, high-frequency power has been linked to information329

processing across several cognitive domains including sensorimotor integration (Crone, Sinai, &330

Korzeniewska, 2006; Cheyne, Bells, Ferrari, Gaetz, & Bostan, 2008; Miller et al., 2007; Crone,331

Miglioretti, Gordon, & Lesser, 1998), auditory speech perception (Chang et al., 2011), visual332

recognition (Hermes, Miller, Wandell, & Winawer, 2015), and memory encoding and retrieval333

(Foster, Dastjerdi, & Parvizi, 2012; Burke, Long, et al., 2014; Howard et al., 2003). Previous studies334

that used iEEG to study mental arithmetic also measured high-frequency power in order to detect335

calculation-specific activity (Ueda, Brown, Kojima, Juhász, & Asano, 2015; Hermes, Rangarajan, et336

al., 2015; Daitch et al., 2016). In addition to a strong relationship between high-frequency power337

and neural activity, prior work has also observed a concurrent reduction in low frequency activity338
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(Ezzyat et al., 2017; Burke, Long, et al., 2014; Burke, Sharan, et al., 2014; Greenberg et al., 2015;339

Long et al., 2014). Unlike the largely asynchronous high-frequency power modulations, these340

low frequency power changes undergo synchronization, which may provide a mechanism for341

inter-regional communication (Burke et al., 2013; Solomon et al., 2017).342

Our findings demonstrate that the broadband changes in spectral power previously observed343

across multiple cognitive domains are also present during periods of cognitively demanding344

mathematical problem solving. Because our analysis focused exclusively on correct trials, our345

results are unlikely to be related to fluctuations in attention to the task that could sometimes346

lead to incorrect responses. Instead, trials that required longer processing time showed greater347

evidence for the spectral tilt, an e↵ect that was not driven by arithmetic properties of the problems348

themselves that are known to correlate with response time. The data suggest that cognitively349

demanding mathematical problem solving exhibits a pattern of whole-brain broadband spectral350

power that is similar to that observed during periods of successful episodic memory formation351

and retrieval (Kragel et al., 2017).352

An important direction for future work will be to directly compare the neural biomarkers of353

success across cognitive domains, for example mathematical problem solving and episodic mem-354

ory encoding/retrieval. Although it was not the focus of this manuscript, it is interesting to note355

the qualitative similarities between the whole-brain spectral tilt during cognitively demanding356

mathematical problem solving and periods of successful memory encoding and retrieval. The357

consistency in neural activity between di�cult mathematical problem solving and episodic mem-358

ory processes is consistent with the notion of desirable di�culties in memory, whereby engaging359

cognitively demanding learning leads to better long-term memory retention (BjorK & Kroll, 2015;360

Karpicke & Roediger, 2008). One possibility is that the similar patterns of broadband spectral mod-361

ulation reflect a state of neural information processing that is associated with periods of successful362

cognition (Hasson, Chen, & Honey, 2015).363

A behavioral model of mathematical problem solving364

We introduced a novel behavioral model to account for trial-level variability in arithmetic factors365

that are known to correlate with di�culty and response time (Ashcraft, 1992). Previous studies366
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have generally defined levels of arithmetic di�culty by pre-selecting trials based on intrinsic367

features related to equation di�culty or by having participants perform pre-experimental training368

to selectively reduce the di�culty of trained equations (Grabner, Ischebeck, et al., 2009; Ischebeck,369

Zamarian, Schocke, & Delazer, 2009; Ischebeck et al., 2007). The most common intrinsic features370

designed to raise procedural complexity included increasing the magnitude of the digits, for371

example from single-digit to double-digit (Vansteensel et al., 2014; Grabner, Ansari, et al., 2009;372

Ueda et al., 2015), or choosing problems that require performing carrying or borrowing (Kong et373

al., 2005; Klein et al., 2010). Our approach is distinct from these earlier studies because we sought374

to explicitly account for and remove the influence of arithmetic factors on response times. We then375

used the resulting model residuals to bin trials based on residual response times, thus identifying376

spectral signatures associated with endogenous variability in a person’s cognitive state (Gilden,377

Thornton, & Mallon, 1995).378

Whole-brain contributions to mathematical problem solving379

By using the spectral tilt to index neural information processing and analyzing intracranial EEG380

recordings in a large dataset, our study was able to replicate and extend to the whole-brain level381

previous studies that have identified core mechanisms of mathematical problem solving in specific382

neural populations (Dastjerdi, Ozker, Foster, Rangarajan, & Parvizi, 2013; Daitch et al., 2016; Ueda383

et al., 2015; Vansteensel et al., 2014). Our findings demonstrate that regions of the frontal cortex384

remain activated throughout the response interval with a spectral di↵erence arising shortly after385

cue presentation and normalizing immediately before response production (Fig. 2C). Previous386

fMRI studies have shown modulations of BOLD signal in IFG in response to manipulations of387

equation complexity and level of practice with specific arithmetic problems (Kazui, Kitagaki, &388

Mori, 2000; Kong et al., 2005; Delazer et al., 2003; Arsalidou & Taylor, 2011). Yet, prior intracranial389

EEG studies have failed to identify significant high frequency activity within this region. Our390

results are therefore consistent with the fMRI literature and demonstrate a plausible temporal391

course of activation, whereby equation presentation causes an initial peak in cognitive demand392

followed by persistent activity until a solution is obtained.393

Our findings in the parietal cortex are consistent with the prominent Triple Code model394
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(Dehaene et al., 2003) of mathematical cognition, as well as findings from intracranial EEG. The395

Triple Code model predicts the existence of three numerical representations in parietal cortex de-396

fined by the angular gyrus, intraparietal sulcus, and superior parietal system. The angular gyrus,397

for example, has been linked to arithmetic fact retrieval and learning (Ischebeck et al., 2009; Klein,398

Moeller, Glauche, Weiller, & Willmes, 2013; Grabner et al., 2007), while the intraparietal sulcus399

has a role in representing numerical quantities (Kadosh & Walsh, 2009). These regions, which400

are part of our IPC ROI, have demonstrated calculation-related high-frequency power in several401

intracranial EEG studies (Dastjerdi et al., 2013; Daitch et al., 2016; Ueda et al., 2015; Vansteensel et402

al., 2014) that is also related to problem di�culty (Vansteensel et al., 2014).403

Prior work has also identified modulations in functional coupling between the IPC and infe-404

rior temporal lobe during distinct stages of numerical processing (Daitch et al., 2016). Our work405

extends these findings by showing a robust spectral tilt response in ITG that is emphasized when406

separating trials based on cognitive demand (Fig. 2A-B). When examining the timing of this activ-407

ity, a predominantly late response was detected, which aligns with the idea that ITG participates408

in direct computation in addition to early visual numeral encoding. The contribution of MTG to409

mental calculation has been less clearly elucidated in the prior literature. Lesions in this area cause410

deficits in rote recall of arithmetic facts (Dehaene & Cohen, 1997), while fMRI functional connectiv-411

ity increases during easier arithmetic (Klein et al., 2013, 2016). It may seem surprising then that we412

observe a significant spectral tilt in this area during cognitively demanding mathematical problem413

solving. Two possible explanations are that MTG is recruited during situations of arithmetic fact414

retrieval as well as cognitively demanding arithmetic computation, or that some element of arith-415

metic fact retrieval contributes to performance during cognitively demanding problem solving.416

Future work will be necessary to adjudicate between these possibilities.417

Conclusion418

We recorded intracranial EEG in a large sample of participants to obtain extensive cortical and419

subcortical electrode coverage, with which we characterized whole-brain patterns of neural ac-420

tivity during cognitively demanding mathematical problem solving. Spectral analysis revealed a421

widespread spectral tilt pattern characterized by increased high-frequency power and decreased422
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low-frequency power. This broadband pattern was present across frontal, parietal and temporal423

cortical areas for problems that required high levels of information processing, a pattern similar424

to that observed in previous studies in other cognitive domains such as episodic memory. The425

data suggest that broadband shifts in the power spectrum of neural activity arise from task-related426

information processing and are unlikely to reflect basic attention or orientation to the task.427
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Region of Interest (ROI) Total Subjects Total Electrodes
Average ± SD 

Electrodes/Subject
Maximum 

Electrodes/Subject
Inferior Frontal Gyrus (IFG) 228 1580 7.1 ± 5.0 27
Middle Frontal Gyrus (MFG) 220 2543 12.0 ± 9.6 51
Superior Frontal Gyrus (SFG) 144 1597 11.4 ± 11.2 53
Inferior Temporal Gyrus (ITG) 230 1743 7.8 ± 6.1 35
Middle Temporal Gyrus (MTG) 258 3543 14.3 ± 8.8 50
Superior Temporal Gyrus (STG) 244 2488 10.2 ± 7.0 28
Inferior Parietal Cortex (IPC) 230 2718 12.2 ± 10.8 60
Superior Parietal Cortex (SPC) 152 1176 7.7 ± 7.1 39
Medial Temporal Lobe (MTL) 144 464 3.2 ± 2.1 9
Hippocampus (HIPP) 151 803 5.3 ± 3.2 17
Occipital Cortex (OC) 140 916 6.5 ± 7.4 54

Table 1: Cortical and subcortical electrode coverage. This table displays the number of subjects
with electrodes in a given region of interest along with the total number of electrodes recorded
across all subjects. The average number of electrodes for each subject with the corresponding
standard deviation is noted.
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Figure 1: Experimental design, behavioral results, and model of arithmetic problem complexity.

A. Participants performed blocks of a self-paced arithmetic task consisting of equations of the
form of A + B + C = ??. B. The across-subject average accuracy and response time for each
problem are graphed as a function of the problem sum. C. Demonstration of the method utilized
for separating trials based on di�culty. Left: The equation used in a linear regression model of
arithmetic problem complexity. Right: Histogram of residual response times from the behavioral
model for an example subject. D. Average response time across subjects as a function of problem
digit combination. First digit, A, is indicated above each panel, while digits B and C are represented
on the x- and y-axis respectively. E. Predicted response times for each problem digit combination
based on the aggregate subject model presented in the format of Panel D.

22



C
en

te
r F

re
qu

en
cy

 (H
z)

A B

C
Inferior Frontal Gyrus (IFG)

* FDR-corrected
p <0.05

n = 228 n = 220 n = 144

Middle Frontal Gyrus (MFG) Superior Frontal Gyrus (SFG)

Inferior Temporal Gyrus (ITG) Middle Temporal Gyrus (MTG) Inferior Parietal Cortex (IPC)

n = 230 n = 258 n = 230

Figure 2: Spectral power modulation during slow and fast mental arithmetic. A ROI analysis
contrasting spectral power from trials with longer (slow)response times compared to trials with
shorter (fast) response times based on an individual’s median response time. A t-statistic comparing
slow > fast conditions calculated for each ROI. Region and frequency pairs that exhibited an FDR-
corrected di↵erence (q < 0.05) between slow and fast trials are labeled with a gray star. B The
same analysis as in (A); however, trials were separated with respect to the median of the residual
response times from the behavioral model. IFG=inferior frontal gyrus; MFG=middle frontal gyrus;
SFG=superior frontal gyrus; ITG=inferior temporal gyrus; MTG=middle temporal gyrus; STG=
superior temporal gyrus; IPC=inferior parietal cortex; SPC=superior parietal cortex; MTL=medial
temporal lobe cortex; HIPP=hippocampus. C Time course of spectral power changes in regions
showing a spectral tilt pattern. Time along the x-axis represents the average post-stimulus time for
each interval across all subjects. Intervals with a significant increase or decrease in spectral power
(q < 0.05, FDR-corrected) are labeled with a star. Trials were separated by residual response times
from the behavioral model as in (B). The number of participants included in the analysis of each
ROI is shown in the lower right corner.
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