
Kahana and Sekuler (2002) developed a computational 
model that successfully accounts for short-term recogni-
tion memory with low-dimensional stimuli, compound 
sinusoidal gratings whose spatial frequency and phase 
vary. Building on Nosofsky’s (1984, 1986) generalized 
context model (GCM), Kahana and Sekuler’s noisy ex-
emplar model (NEMO) combines core aspects of GCM 
with new key assumptions. NEMO follows the tradition of 
multidimensional signal detection theory (e.g., Ashby & 
Maddox, 1998) in assuming that stimulus representations 
are coded in a noisy manner, with different levels of noise 
associated with various dimensions. NEMO augments the 
summed-similarity framework of item recognition (Clark 
& Gronlund, 1996; Humphreys, Pike, Bain, & Tehan, 
1989; Nosofsky, 1991, 1992) with the idea that recogni-
tion decisions are influenced not only by probe-to-list-
item similarity, but also by the similarity of list items to 
one another, a variable that is called within-list homogene-
ity. Specifically, subjects appear to interpret probe-to-list 
similarity in light of within-list homogeneity, with greater 
homogeneity leading to a greater tendency to reject lures 
that are similar to one or more of the studied items. This 

impact of within-list homogeneity has been confirmed 
by Nosofsky and Kantner (2006), using color patches as 
stimuli, and by Kahana, Zhou, Geller, and Sekuler (2007), 
using compound gratings that were adjusted to reflect in-
dividual subjects’ visual thresholds.

In contrast to compound sinusoidal gratings, essential 
aspects of visual processing of human faces take place 
several synapses beyond the primary visual cortex (Lof-
fler, Gordon, Wilkinson, Goren, & Wilson, 2005; Loffler, 
Yourganov, Wilkinson, & Wilson, 2005). Because the 
primary visual cortex participates not only in visual en-
coding, but also in visual memory and related phenom-
ena (Klein, Paradis, Poline, Kosslyn, & Le Bihan, 2000; 
Kosslyn, Thompson, Kim, & Alpert, 1995; Magnussen & 
Greenlee, 1999), differences between visual processing 
of compound gratings and of human faces might produce 
corresponding differences in recognition memory for the 
two kinds of stimuli (Hole, 1996) and, thereby, undermine 
NEMO’s applicability to face stimuli. Our aim here is not 
to explore or adjudicate among competing psychophysi-
cal or neural accounts of face perception and/or memory 
for faces (e.g., Gauthier, Skudlarski, Gore, & Anderson, 
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2000; Grill-Spector, Knouf, & Kanwisher, 2004; Joseph 
& Gathers, 2002; Riesenhuber, Jarudi, Gilad, & Sinha, 
2004) but to test NEMO’s extensibility to memory for 
high-dimensional stimuli and to refine the methodology 
for measuring and modeling short-term memory.

Studies of face perception and/or face memory have 
used a range of stimuli, including simple cartoons, such 
as the Brunswik faces (Brunswik & Reiter, 1937; Peters, 
Gabbiani, & Koch, 2003; Sigala, Gabbiani, & Logothe-
tis, 2002), photographs collected in convenience samples 
from sources such as school yearbooks, or images whose 
properties have been tailored to the study’s specific pur-
poses (e.g., Gold, Bennett, & Sekuler, 1999). We chose 
to work with realistic, synthetic human faces generated 
using methods introduced by Wilson, Loffler, and Wilkin-
son (2002). As test stimuli, Wilson faces mitigate prob-
lems arising from the availability of nonfacial information 
or from the availability of distinctive featural differences 
among faces (e.g., Duchaine & Weidenfeld, 2003; Sadr, 
Jarudi, & Sinha, 2003). Most important for model-related 
research, the generating algorithm for Wilson faces makes 
it easy to manipulate perceptual differences among faces. 
Furthermore, sets of Wilson faces can be represented in 
n-dimensional perceptual spaces whose properties can be 
tailored to suit some particular theoretical objective. For 
example, the axes of a face space might be orthogonalized, 
or individual exemplar faces might be made equidistant 
from some mean or reference face. Also, small, graded 
differences between faces make it difficult for subjects to 
learn and name each face in a reliable, consistent fashion. 
This is important because naming can subvert mnemonic 
reliance on visual information (e.g., Ashby & Ell, 2001; 
Goldstein & Chance, 1971; Hwang et al., 2005). To re-
inforce reliance on visual information per se, we limited 
rehearsal by permitting subjects only a brief glimpse of 
each face and then allowing only a short interval between 
successive faces. Wilson’s synthesized faces are geometri-
cally simple, as compared with actual, unprocessed gray-
scale photographs of faces, but these synthesized faces 
manage to convey sufficient information to permit iden-
tification of individual faces (Wilson et al., 2002). This 
individuality, which is important in episodic memory, is 
absent from some commonly used face stimuli, such as 
Brunswik faces (Brunswik & Reiter, 1937).

To preview, Experiment 1’s design allowed us to apply 
the NEMO model of visual short-term recognition mem-
ory to performance on individual stimulus lists (i.e., di-
verse series of stimulus items). The model was applied 
in alternative modes—for example, expressing similarity 
either in terms of faces’ physical coordinates or in terms of 
perceptual coordinates, assessed using multidimensional 
scaling (MDS). The design of Experiment 2 provided a 
direct, model-free demonstration of within-list homoge-
neity’s influence on recognition decisions.

EXPERIMENT 1

Perceptual similarity among stimuli plays a central 
role in the structure of NEMO, and in other models of 
recognition as well. With compound gratings as stimuli, 

similarity has been defined by representing stimuli in a 
metric based on subjects’ discrimination thresholds for 
spatial frequency (Kahana et al., 2007; Zhou, Kahana, & 
Sekuler, 2004). That same approach would likely fail with 
face stimuli because the representational space is clearly 
anisotropic. For example, the difference threshold for dis-
criminating between faces varies substantially from one 
region of face space to another, with smallest difference 
thresholds in the neighborhood of the average face (Wil-
son et al., 2002). To permit full expression of potential 
anisotropies, we used nonmetric MDS to characterize the 
perceptual space within which our face stimuli were lo-
cated and to quantify the distances between faces in that 
space. The data used for MDS came from oddity judg-
ments made on simultaneously presented trios of faces.

Method
Subjects. Two male and 6 female volunteers from 20 to 25 years 

of age participated in the main experiment. All were naive as to the 
purpose of this experiment. They had normal or corrected-to-normal 
visual acuity, as measured with Snellen targets, and normal contrast 
sensitivity, as measured with Pelli–Robson charts (Pelli, Robson, & 
Wilkins, 1988).

Stimuli. Stimuli were generated and displayed using MATLAB 
and extensions from the Psychophysics and Video Toolboxes (Brain-
ard, 1997; Pelli, 1997). Stimuli were presented on a 15-in. computer 
monitor with a refresh rate of 95 Hz and resolution set to 800 3 
600 pixels. Routines from the Video Toolbox calibrated and linear-
ized the display. Mean screen luminance was fixed at 36 cd/m2.

The Wilson faces used in all our experiments were based on 
photographs of three Caucasian females whom we designate A, B, 
and C. From mA, the vector of 37 measurements taken on actual 
Face A, we synthesized a realistic version of that face in a stimulus 
space of high dimensionality (n 5 37). Vectors of measurements 
taken on Faces A, B, and C were transformed mathematically so 
as to be mutually orthogonal, by Gram–Schmidt orthogonalization 
(Diamantaras & Kung, 1996; Principle, Euliano, & Lefebvre, 2000). 
Consequently, variation in one face’s geometric properties is inde-
pendent of the variation in geometric properties of the other two 
faces (Wilson et al., 2002). Additional details of the faces’ construc-
tion and properties are given in the Appendix.

After preprocessing and normalization, vectors of measurements 
from several different faces can be combined to generate mavg, the 
vector of measurements for an average face. To illustrate, the syn-
thesized mean female face is shown at the left of Figure 1. This mean 
face is derived from a sample of 40 Caucasian female faces. Sum-
ming k(mavg) and (12k)(mA), for some k, 0 , k , 1, generates a 
face that is a mixture of the mean face and some particular individual 
face—in this case, A. Allowing k to vary, k 5 0 . . . 1, generates a 
graded series of faces spanning a continuum from the mean synthe-
sized face (when k 5 1) to a synthesized version of Face A alone 
(when k 5 0). The same operation also can generate a graded series 
of faces, which span the distance from the mean face toward any 
other face—here, toward B or C. With these faces, it is easy to vary 
one stimulus’ similarity to another, a variable that is important in 
recognition memory and central to NEMO.

The graded series for Faces A–C are shown in the upper three 
rows of Figure 1. Within each row, the value (12k) ranges from 
.04 to .20, in increments of .04. This means that each face differs 
from its nearest neighbor by approximately the mean discrimination 
threshold taken under viewing conditions similar to the ones we used 
(Wilson et al., 2002). In geometric terms, Faces A–C lie along the 
mutually perpendicular axes of a 3-D space, with the mean face at 
the origin.

A final set of faces, D, was generated by averaging corresponding 
exemplars of A, B, and C. The resulting faces are shown in the bottom 
row of Figure 1. Geometrically, the faces in row D lie along the diagonal 
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of face space, which means that the geometric properties of the faces in 
D are equally well correlated with the geometric properties of each of 
the other faces, A, B, and C. Figure 2A shows the geometric arrange-
ment of all 21 synthetic faces in a space of three orthogonal dimen-
sions. To minimize potential influences from emotional expressions 
on the stimulus faces (Goren & Wilson, 2006; Isaacowitz, Wadlinger, 
Goren, & Wilson, 2006), our set of Wilson faces substituted constant 
generic shapes for features that would change shape or relative posi-
tion as emotions were expressed (Ekman & Friesen, 1975).

Procedure. On each trial, a study set of three faces, the study 
series, was followed by a single probe face (p). The subjects judged 
whether p had been among the items in the study series. We use the 
term target to designate a p that had been in the study series and 
the term lure to designate a p that had not been in the study series. 
Correspondingly, we can designate any trial as either a target trial 
or a lure trial. Because the study series varied from trial to trial, the 
subjects were forced to base each yes–no recognition judgment on 
the items they had just seen.

Each study face was presented for 110 msec, with an interstimulus 
interval of 200 msec. The use of brief presentations was inspired by 
Wilson et al.’s (2002) use of this same duration in their studies of face 
discrimination and by the fact that fairly detailed processing of a face 
can be completed within the first 100 msec of viewing (Lehky, 2000).

A warning tone followed the study series. Then, after a 1,200-
msec retention interval, a p face was presented for 110 msec. For 
each study list, p was chosen at random from the entire set of faces, 
with two constraints. First, on half of all trials, p was forced to rep-
licate one of the items in the study set (on half of all the trials, p dif-
fered from all the study items). Second, when p matched one of the 
study items, it matched items in each serial position equally often. 

Distinctive tones following each response gave the subjects trialwise 
knowledge of results.

Although there were small differences in size from face to face, 
each was approximately 5.5º high 3 3.8º wide. To eliminate the 
usefulness of Vernier-type cues, the vertical and horizontal position 
of each face was perturbed on each presentation by adding a pair 
of random displacements drawn from a uniform distribution with 
mean 5 12.6 minarc and range 5 2.1–23.1 minarc.

Sixty different stimulus series were used. A preliminary study 
with different subjects and many more stimulus series identified 
these 60 series as likely to span a wide range of recognition perfor-
mance (Yotsumoto, Kahana, Wilson, & Sekuler, 2004). We reasoned 
that a wide range of performance would allow for the strongest test 
of NEMO. Of the 60 stimulus series, half consisted of target trials, in 
which p replicated one of three study items; the remaining lists con-
sisted of lure trials, in which p replicated none of the study items.

The subjects participated in four 1-h sessions of 490 trials each. 
The first 10 trials of any session were treated as practice and were 
eliminated from data analysis; this left 32 replications for each 
stimulus series and subject. During testing, a subject sat with head 
supported by a chin-and-forehead rest, viewing the computer display 
binocularly from a distance of 114 cm. Trials were self-initiated.

Multidimensional scaling. To characterize the perceptual simi-
larity structure of the synthetic faces (Lee, Byatt, & Rhodes, 2000), 
the subjects who would serve in the recognition memory experiment 
first took part in a study with nonmetric MDS. The data required 
for such scaling were generated using the method of triads (Ennis, 
Mullen, Frijters, & Tindall, 1989). On each trial, three faces were 
presented simultaneously, side by side, for 500 msec. Simultane-
ous presentation was used in order to minimize likely effects of 

Figure 1. Face stimuli used in Experiment 1. Constructed after the method of Wilson, Loffler, and 
Wilkinson (2002), the stimulus labeled mean is the average of 40 female faces. In the matrix of faces, rows 
A–C show faces derived from three different faces; row D shows faces that are the means of Faces A–C. 
Over the matrix columns 1–5, faces deviate increasingly from the mean, by .04, in column 1, through .20, 
in column 5. For additional details, see the text. 
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memory. From the set of three faces, the subjects chose the one face 
that seemed most different from the other two (Romney, Brewer, & 
Batchelder, 1993; Wexler & Romney, 1972). We did not specify the 
characteristic(s) on which similarity judgments should be based.

To minimize the possibility that Vernier-type cues might contrib-
ute to the dissimilarity judgments, each face’s vertical position was 
randomly offset by a sample from a uniform distribution spanning 
16.8 min. Each possible stimulus pair (Face1, Face2) was presented 
with every other possible stimulus—for example, Face3. If stimulus 
Face3 was selected as the stimulus most different from the others, 
then by default, the remaining stimuli, Face1 and Face2, were as-
sumed to be the most similar to one another. A similarity matrix was 
constructed by counting the number of times that a stimulus pair 
(e.g., Face1, Face2) was designated as similar when placed in combi-
nation with various other stimuli (e.g., Face3 . . . Face21).

To control the number of trials required for MDS, we used a bal-
anced incomplete block design (Weller & Romney, 1988). For this 
design, we generated triads of faces (blocks), whose members were 
drawn from the complete set of 21 faces. This selection was con-
strained so that each of the 210 pairs of faces occurred in the context 
of 30 triads. This arrangement meant that the 30 trials whose triads 
included any particular pair of faces were likely to have different 
faces as their third member. The spatial displacements of the three 
faces were randomly determined anew for each trial.

Each subject participated in three 1-h sessions of 710 trials each. 
The first 10 trials of each session were treated as practice and were 
eliminated from our data analysis. The remaining 2,100 triadic 
comparisons per subject were converted into a dissimilarity matrix, 
which were processed by SPSS’s ALSCAL and INDSCAL routines, 
using a Euclidean distance model.

Results
Recognition memory. Figure 3 shows the mean pro-

portion correct for lure trials (arrow at right side of figure) 
and for target trials as a function of p’s serial position (three 
gray bars). An ANOVA showed that recognition on target 
trials across the three serial positions varied significantly 
[F(2,14) 5 24.43, p , .001], and an a priori comparison 
revealed a significant effect of recency [F(1,7) 5 32.98, 
p , .01]. For comparison, the stars in Figure 3 represent 
results with these same 60 stimulus series in another ex-

periment with different subjects and many more stimulus 
series (Yotsumoto et al., 2004). The comparability of re-
sults from the two independent replications is gratifying. 
Note that performance for each serial position is signifi-
cantly greater than chance; that is, each hit rate is signifi-
cantly greater than the false alarm rate (paired two-tailed 
t tests: p ,.02, .01, and .001 for Serial Positions 1, 2, 
and 3, respectively). So although performance with the 
first two serial positions is low, it is above chance.

Figure 2. Representations of face stimuli in alternative 3-D spaces. In each panel, 
the star indicates the location of the mean face; squares, diamonds, circles, and tri-
angles represent faces from Categories A, B, C, and D, respectively. The numbers 1–5 
designate the faces’ distance from the mean; the numbers correspond to the columns 
in Figure 1. (A) The 21 face stimuli arranged according to the Euclidean distances be-
tween the faces’ physical descriptions—that is, the physical distance of each face from 
the mean. (B) Arrangement of the stimulus faces in a 3-D perceptual space, using the 
MDS solution to position each face (Experiment 2). The MDS space shown here has 
been Procrustes transformed to bring its dimensions into line with those of the space 
shown in panel A. 
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Figure 3. Proportions of correct recognition responses on tar-
get trials for probe matching various study items. Error bars 
represent 1 standard error of the mean, calculated using the 
correction suggested by Loftus and Masson (1994). The arrow to 
the right of the graph represents the mean proportion correct on 
lure trials. Each star shows the proportion correct generated by 
29 different subjects who tested in the same conditions during an 
experiment described elsewhere (Yotsumoto, Kahana, Wilson, & 
Sekuler, 2004). 
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Multidimensional scaling. MDS solutions were ob-
tained for representations in one to six dimensions. Values 
of r2, which represent the proportion of variance accounted 
for in the scaled data, increased as the number of dimen-
sions varied from one to three but saturated thereafter. On 
the basis of these values and also on the dimensionality of 
the stimuli, subsequent modeling was based on the 3-D 
MDS solution. In that solution, Kruskal’s stress measure 
was 0.26, and r2 was .62. The 3-D solution generated by 
MDS is shown in Figure 2B. Each symbol represents one 
synthetic face, and the pairwise distances between sym-
bols represent corresponding pairwise perceptual dissimi-
larities between the faces.

We used Procrustes analysis (Dryden & Mardia, 1998) 
to visualize relationships between this 3-D description of 
similarity space and the 3-D structure in which the faces 
were generated. The Procrustes analysis linearly trans-
formed the matrix of values from the MDS solution to 
bring that matrix into best conformity with the matrix of 
pairwise distances in the faces’ physical space. The out-
come, shown in Figure 2B, was based on the Euclidean 
similarity transformations of translation, reflection, or-
thogonal rotation, and isotropic scaling of points in the 
MDS solution. If the perceptual representation of these 
synthetic faces were identical to their physical representa-
tion, the post-Procrustes MDS solution would be perfectly 
congruent with the representation in Figure 2A, in which 
Faces A, B, and C are orthogonal to each other and exem-
plars of Face D lie on the diagonal.

Clearly, although the transformed MDS solution does 
resemble the arrangement of the face stimuli themselves, 
residual differences remain between the perceptual space, 
as represented by MDS, and the physical space. After the 
Procrustes transformation, the sum of squared residual dis-
crepancies between the physical representations and the 
transformed MDS representations was 0.26. To provide an 

intuition about the magnitude of this value, we used Monte 
Carlo methods to put this sum of squares into the same units 
as those used for the Euclidean physical space (Figure 2A). 
A series of Procrustes analyses were done on matrices in 
which the faces’ physical coordinates were randomly per-
turbed to varying, known degrees, by the addition of in-
dependent, zero-mean, Gaussian random deviates to each 
of the three coordinates for each face. This operation was 
carried out 1,000 times for Gaussian distributions with dif-
ferent standard deviations. From the mean residual sums of 
squares associated with each value of standard deviation, 
we identified the random perturbation of face coordinates 
that produced the same residual sum of squares as had been 
obtained with the Procrustes transformation of the MDS 
solution. The standard deviation of the residual difference 
between the MDS solution and the original physical co-
ordinates was equivalent to 6%–7%, which corresponds 
to ~1.5 3 the separation of neighboring faces within any 
single category of faces, A . . . D.

To examine the residuals on a finer scale, the mean re-
siduals between the MDS solution and the faces’ physi-
cal coordinates were calculated and then sorted into bins 
according to the distance between faces in a study series 
and the mean of the 21 faces. These values are plotted in 
Figure 4. Note that the magnitude of the residuals grew 
with increasing distance from the mean face, confirming 
that perceptual and physical representations of faces were 
most discrepant for the more extreme faces in our set.

As a further comparison between the MDS and the 
physical representations of our 21 faces, we computed 
the vector angles between perceptual exemplars of A, B, 
and C. These vector angles are shown in Table 1. Faces just 
4% away from the mean face were excluded from these 
calculations because, in MDS space, those faces clustered 
tightly around the mean face, which made angle measure-
ments for those faces meaningless. The mean angles based 
on the 8%, 12%, and 16% data were 89º, 70º, and 93º, 
suggesting that the perceptual similarity space preserved 
much, but not all, of the orthogonality that had been built 
into the faces’ original 3-D space. However, all of the 
angle estimates dropped when the .20 faces were included 
in the calculations, which confirms the demonstration in 
Figure 4 that these extreme faces show the largest percep-
tual deviations from the geometry of Figure 2A’s space.

Model
We applied NEMO to the recognition memory data. 

As was mentioned before, NEMO departs from the clas-
sic summed-similarity models of item recognition (e.g., 
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Figure 4. Mean distance between faces’ representations in 
physical space and in perceptual (MDS) space, as a function of 
distance from the mean face. 

Table 1 
Angles Between Perceptual Representations of 

Face Categories A–C

Face Distance  AB Angle  AC Angle  BC Angle

8% 125.7 65.3 116.1
12% 83.2 74.2 80.7
16% 57.4 71.5 83.4
20% 46.5 54.9 63.3

Mean for 8%–20% 78.2 66.5 85.9
Mean for 8%–16%  88.8  70.3  93.4
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McKinley & Nosofsky, 1996; Nosofsky, 1986) by allow-
ing recognition judgments to be determined not only by 
the similarity between the probe, p, on one hand, and each 
study stimulus, on the other, but also by similarities among 
study items themselves. Given a series of L study items, 
s1 . . . sL, and a probe, p, NEMO responds yes if
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where η( p, si) is the perceptual similarity between p and 
the ith study item (see Equation 2, below), ε is a vector 
representing the noise associated with each stimulus di-
mension, αi is the weight given the ith study item, and 
CL represents an optimal criterion for a series of L study 
items. To allow for the possibility that subjects’ decision 
rule might incorporate within-list homogeneity, NEMO 
adds together (1) summed similarity and (2) within-list 
homogeneity, weighting the latter by a parameter β. If 
β 5 0, the model reduces to a standard summed- similarity 
model (Nosofsky, 1986) with noisy item representa-
tions (Ennis, 1988) and a deterministic decision rule. If 
β , 0, when s1 . . . sL are similar to one another, a given 
lure becomes less tempting; that is, it attracts fewer yes 
responses. The opposite effect would accompany β . 0, 
that is, study items similar to one another would attract 
more yes responses.

In NEMO, similarity, η(si, sj), between item representa-
tions, si and sj, is given by
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where d is the weighted distance between the two stimulus 
vectors and τ, c, and a jointly determine the form of the 
generalization gradient.

With similarity defined in either physical or perceptual 
(MDS) space, we ran parallel simulations of NEMO, with 
one set of simulations using each definition of similarity. 
Among parameters in Equation 2, we fixed c 5 1, imple-
menting a simple exponential generalization function, as 
suggested by previous empirical results (Kahana & Sekuler, 
2002). To reduce the number of NEMO’s free parameters 
further, we used an independent, empirical estimate of τ 
and a. We estimated similarity in physical space using data 

from a large-scale preliminary experiment (Yotsumoto 
et al., 2004) that generated an empirical approximation 
of the similarity tuning function in physical space.1 The 
similarity tuning function’s exponent and y-intercept, 9.20 
and 0.84, were used for τ and a, respectively, in one set of 
model simulations. Then, reusing results from the prelimi-
nary experiment, we transformed interface distances ac-
cording to values from the MDS analysis and fit a second 
exponential similarity function. This generated a similarity 
tuning function in perceptual space. The function’s expo-
nent and y-intercept, 11.14 and 0.91, were used as τ and a, 
respectively, in a second set of model simulations. Finally, 
we fixed one other parameter, setting NEMO’s criterion to 
0.5, which is the empirical value found in previous model 
fits (Kahana & Sekuler, 2002).

Simulations and application of model. We fit 
NEMO to the value of p(yes) obtained for each of the 60 
different stimulus lists in Experiment 1. A genetic algo-
rithm (Mitchell, 1996) found NEMO’s best-fitting param-
eter set by minimizing the root-mean squared difference 
(RMSD) between observed and predicted recognition 
scores. The genetic algorithm allowed a population of 
1,000 random parameter sets to evolve for 20 generations. 
At the end of every generation, each of the 500 least-fit pa-
rameter sets was replaced with a new parameter set, which 
randomly drew each of its parameter values from one of 
the nonreplaced 500 best-fitting parameter sets. Then the 
 nonreplaced 500 best-fitting parameter sets were mutated 
by a single Gaussian parameter change with a standard de-
viation of 30% of a parameter’s range. Finally, to produce 
an estimate of RMSD, each parameter set ran for 1,000 
simulated trials for each stimulus list.

Results of model simulations. We fit the subjects’ aver-
age performance twice, expressing NEMO’s interface sim-
ilarity values, τ, a, and d(si, sj), either as physical distances 
between faces or as values from the MDS descriptions of 
subjects’ perceptual space. Table 2 gives the best-fitting 
model parameters for NEMO derived from the genetic al-
gorithm. The “Physical” column shows the best parameters 
using stimulus distances in physical space, and the “MDS” 
column shows the best parameters using stimulus distances 
in MDS perceptual space. The first three parameters, σ1, 
σ2, and σ3, are the variances of noise distributions—one for 
each dimension of the 3-D, perceptual space. σ1, σ2, and σ3 
correspond to Dimension 1, 2, and 3 in Figure 2. The next 
two parameters, α1 and α2, represent forgetting for the first 
and second items in a study series, respectively. (For the 
last item in a study series, α3 was set to one.)

As was explained earlier, β represents the contribution 
of within-list homogeneity. Its negative sign for both sim-
ulations indicates that when study items were similar to 
one another, NEMO became more conservative, decreas-
ing any tendency to treat a lure as a target. Note, finally, 
that the RMSD associated with the perception-based fit 
(0.101) is smaller than the RMSD associated with the fit 
based on the faces’ physical representation (0.123).

Each of the best-fitting parameter sets was used to gen-
erate NEMO’s predictions for each of the 60 lists. Because 
NEMO has three nondeterministic noise parameters, 
running the model with any single trio of noise samples 

Table 2 
Best-Fitting Parameter Values for NEMO’s Fit to the Data

Parameter  Meaning  Physical  MDS

σ1 Dimension1 noise 20.033 0.032
σ2 Dimension2 noise 20.072 0.046
σ3 Dimension3 noise 20.045 0.046
α1 Forgetting of 1st item 20.470 0.570
α2 Forgetting of 2nd item 20.400 0.450
β Interitem similarity 20.530 20.340
τ Tuning function steepness 29.200 11.140
RMSD    20.123  0.101
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σ1 . . . σ3 could not produce a singular, exact set of pre-
dictions. Therefore, NEMO was used to simulate 1,000 
trials for each of the 60 study–p lists, with new, indepen-
dent random noise samples drawn for each trial. From 
these 1,000 trials, we obtained the predicted proportion of 
yes responses for each list. Figure 5 shows, for each list, 
the relationship between the predicted and the observed 
proportions of yes responses. The predictions made with 
similarity defined by the physical representations of face 
stimuli are shown in Figure 5A; predictions based on the 
MDS solution are shown in Figure 5B. NEMO produced a 
better account of the data when it incorporated perceptual 
similarity among faces. Physical and perceptual similari-
ties produced r2 5 .68 and .76, respectively. To gauge the 
reliability of this difference in r2, we repeated the simula-
tion an additional 1,000 times for each list, again drawing 
new independent noise samples for each trial and calcu-
lating r2 anew after every new 1,000 trials. For simula-
tions based on physical similarity between faces, the mean 
r2 5 .6838 (SD 5 .0109); for simulations based on MDS-
defined similarity, the mean r2 5 .7573 (SD 5 .0090). The 
difference between these mean values of r2 is highly sig-
nificant (z 53.43, p ,.001).

The reliability of the MDS solutions. To assess the 
consistency of the subjects’ triadic judgments, we com-
puted two different mean MDS solutions. One solution 
was based on the subjects’ dissimilarity judgments on 
all the odd-numbered trials (i.e., first, third, fifth, etc.); 
the second solution was based on judgments from all the 
even-numbered trials (i.e., second, fourth, sixth, etc.).2 For 
each 3-D solution, the Euclidean distances between all the 
face pairs were taken, and the correlation was calculated 
between pairwise distances from odd trials and pairwise 
distances from even trials. The results are shown as a scat-
terplot in Figure 6. Despite the 50% reduction in the num-
ber of judgments on which each MDS solution was based, 
the pair of MDS solutions produced by this process had a 

relatively strong correlation, with r2 5 .79, which we take 
as confirmation that the triadic comparisons produced re-
liable measures of similarity.

As was noted earlier, NEMO’s predictions were more 
accurate when psychophysical (MDS) rather than purely 
physical similarities were taken account of, but those pre-
dictions had a number of clear outliers. These were stimu-
lus series on which the model failed badly—that is, devi-
ated by .20 or more from the predicted p(yes). To identify 
the origin of these failures, we examined the makeup of 
these series. Of the five outliers, three contained two or 
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more faces that deviated from the mean face by the larg-
est value possible—namely, .20. To this outcome, Monte 
Carlo simulation assigned a probability .02 , p , .01. So, 
faces with the greatest deformation, relative to the mean 
face, produced the largest errors in NEMO’s predictions. 
As is shown in Figure 4 and in Table 1, these extreme 
faces deviated appreciably from the orthogonal physical 
representations of the faces. These deviations might have 
arisen from perceptual transformations associated with 
the faces’ “strangeness,” which effectively introduced an 
additional perceptual dimension limited to the extreme 
faces. Because this added dimension was associated with 
only a subset of the faces, it was not represented fully in 
the MDS solution.

Discussion
NEMO’s account of the recognition results gives fur-

ther support to the idea that recognition decisions depend 
upon both summed similarity and within-list homogene-
ity. Discrepancies between the faces’ representation in 
physical space (Figure 2A) and their perceptual repre-
sentation (Figure 2B) advantaged model fits that were 
based on perceptual, rather than physical, similarities 
between faces. The perceptual representation was based 
on MDS, which requires as input a matrix of similarity or 
dissimilarity judgments. Researchers have taken various 
approaches to generate such matrices. For example, the 
input matrix has been generated by asking subjects to 
rate the distinctiveness of items presented one at a time 
(Lee et al., 2000; Valentine, 1991; Valentine & Bruce, 
1986; Valentine & Endo, 1992) or to rate numerically 
the similarity of items presented in pairs (Johnstone & 
Williams, 1997; Nosofsky, 1991; Peters et al., 2003). We 
took a different approach, using triadic comparisons to 
produce the input matrix for MDS. We chose this method, 
in part, for its efficiency in generating many different 
comparisons per pair of faces and, in part, because the 
task resembled the recognition memory task we used. 
For one thing, by encouraging subjects to distinguish 
among members of the briefly presented triad, the task 
was likely to engage the rapid and sometime subtle dis-
tinctions required in the recognition judgments. At the 
same time, variation in the triad’s constituents from one 
presentation to another mimicked the trialwise variation 
among study series.

Torgerson (1958) described other variants of the 
method of triadic comparisons in which subjects had to 
make multiple, explicit pairwise judgments per trial. Note 
that the single explicit judgment required on each trial in 
our application implies that subjects have made one or 
more pairwise comparisons, although such comparisons 
are not made explicit. Letting the stimuli in the triad be i, 
j, and k, our subjects’ identification of one item as most 
dissimilar could reflect evaluations of inequalities among 
|i 2 j|, |i 2 k|, and | j 2 k|. Of course, when subjects are not 
forced to make such evaluations explicit, one cannot rule 
out the possibility that, particularly with time pressures, 
subjects might sometimes make fewer than all pairwise 
comparisons.

EXPERIMENT 2

The simulations applied to the data from Experiment 1 
revealed that visual memory performance could be well 
predicted by a model that takes account of both summed 
similarity and within-list homogeneity. Because the 
within-list homogeneity term is a novel addition to the 
summed-similarity framework, we sought an additional, 
direct, model-free demonstration that within-list homoge-
neity was actually important in face recognition memory. 
Therefore, we designed stimulus series in which variation 
in both summed similarity and within-list homogeneity 
were controlled. We expected that the responses produced 
by various combinations of the two factors would directly 
demonstrate the contribution of each factor, without the 
mediation of a computational model.

Method
Apparatus, Stimuli, and Procedure. The apparatus and stimuli 

were the same as those in Experiment 1, except that multiple sub-
jects were tested simultaneously, using computers in a classroom 
cluster. Although the subjects did not use chinrests, they were en-
couraged to maintain a constant viewing distance of approximately 
57 cm from their computers. The procedure was the same as that in 
Experiment 1, except that the three study faces for each trial were 
forced to come from three different categories of faces, A . . . D 
(as shown in Figure 1). Study lists were first generated randomly. 
Because of the upper limit on possible pairwise, physical differ-
ences between the faces that we used, differences among randomly 
selected faces tended to be small, which produced skewed distribu-
tions of summed similarity and within-list homogeneity. Moreover, 
the randomly generated lists produced nonzero covariance between 
summed similarity and within-list homogeneity. To test wider ranges 
of both types of similarity independently, summed similarity and 
within-list homogeneity had to be distributed uniformly. To gener-
ate series meeting this criterion, the distributions of two kinds of 
similarity were calculated after random generation of a set of se-
ries, and existing stimulus series were replaced by newly generated 
ones until we had a set of study series that satisfied the distribution 
requirement.

Subjects. Twenty-nine Brandeis undergraduates participated as 
part of a course requirement; during the session, each subject took 
part in 436 trials. All the subjects were naive as to the experimental 
purpose, and none had taken part in our other experiments.

Results and Discussion
For each series on which p was a lure, we used the faces’ 

physical coordinates to calculate summed similarity be-
tween p and all the study items and the within-list homo-
geneity. For this purpose, similarity was assumed to be 
monotonic with Euclidean distance in the physical space 
represented in Figure 2A. We sorted the trials into the cells 
of a 3 3 3 matrix, whose rows represented three levels of 
summed similarity and whose columns represented three 
levels of within-list homogeneity. At the end of the sort-
ing, each cell of the 3 3 3 matrix contained 24 trials per 
subject. The proportion of yes responses was calculated 
separately for each of the nine cells in the matrix; these 
values are plotted in Figure 7. The parameter of the fam-
ily of curves is within-list homogeneity. The proportion 
of yes responses increased with summed similarity but 
decreased with growth in within-list homogeneity. A re-
peated measures ANOVA showed that both these effects 
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were statistically significant [F(2,56) 5 85.6, p , .01, 
and F(2,56) 5 7.08, p , .05, for summed similarity and 
within-list homogeneity, respectively]. The interaction 
was not significant [F(4,112) 5 1.16, p 5 .33].

Note that the directions of the two effects observed here 
reproduced the corresponding effects seen in simulations 
with NEMO for Experiment 1. Of particular interest was 
the direct confirmation that within-list homogeneity and 
summed similarity operate in opposed directions to influ-
ence recognition judgments, just as NEMO demonstrated 
they did.

GENERAL DISCUSSION

Physical Coordinates Versus MDS Solutions
NEMO’s account of visual recognition memory per-

formance for face stimuli was improved when the model 
incorporated faces’ perceptual similarity, rather than 
purely physical coordinates. It is important to note that 
with either perceptual or physical representations of simi-
larity, NEMO had the same number of free parameters; 
therefore, this difference did not result from a difference 
in model complexity.

We should note that not every related study has dem-
onstrated an advantage from describing stimuli in percep-
tual (MDS) terms, rather than physical ones. Peters et al. 
(2003) found that the performance of categorization mod-
els was either unchanged or even slightly diminished when 
face stimuli were described using MDS, rather than a na-
tive physical metric. In their study, subjects were trained 
to categorize stimuli including schematic Brunswik–
Reiter faces (1937) and slightly more elaborate cartoon 
faces. These faces were defined in 4-D physical spaces, 
which the subjects learned to bifurcate using a simple, 
linear separable criterion. After learning the category 
membership of various exemplars, the subjects’ categori-
zation was tested with mixtures of previously seen faces 
and new ones. Peters et al.’s modeling results favored the 
proposition that the subjects stored a sparse, abstracted 
representation of category properties, rather than the char-
acteristics of individual exemplars. This demonstration of 
longer term learning of stable category properties is quite 
different from the case in our experiments on episodic 
recognition, where the subjects seem to have stored indi-
vidual exemplars, at least for the brief duration of a single 
trial. In categorization tasks such as Peters et al.’s, subjects 
can learn abstract rules over the course of their experience 
with many exemplars. However, such a strategy would not 
work in episodic recognition tasks in which targets and 
lures are drawn randomly from a common stimulus space 
and in which no simple rule could work in the face of trial-
to-trial variation in the study and test items. Of course, if 
some simplifying consistent bias were introduced into a 
recognition experiment so that lures were always drawn 
from one category (say, Wilson faces from Class A) and 
targets were always drawn from a different category (say, 
Wilson faces from Class B), subjects undoubtedly would 
eventually learn the rule and be able to ignore the study 
items. Clearly, though, such an experiment would no lon-
ger be an experiment on episodic recognition.

Differences From Compound Gratings
One of our purposes was to investigate short-term vi-

sual memory with higher dimensional stimuli, particularly 
by applying NEMO to the recognition of synthetic faces. 
The best-fitting parameters obtained here preserved the 
general characteristics observed in Kahana and Sekuler’s 
(2002) experiments with memory for compound grat-
ings. For example, in both experiments, recency effects 
were captured by values of α, and the empirical effects 
of  within-list homogeneity were reflected in significantly 
negative values of β. Moreover, despite the fact that τ 
values were derived in different ways for recognition of 
gratings and of faces, the resulting τ values were close be-
tween the two experiments (8.8 and 10.7 with compound 
gratings, 9.20 and 11.14 with synthetic faces).3 It seems, 
then, that similar similarity-distance functions operate for 
both low-dimensional (gratings) and high-dimensional 
(synthetic faces) stimuli.

However, memory for synthetic faces may differ in an 
important way from the memory for compound gratings. 
Even though we found a recency effect with synthetic 
faces, as well as with gratings, attributes of the recency 
effect observed in this study differed from those found 
with gratings. With gratings, the recency effect persisted 
across the entire list, with performance increasing sys-
tematically from the least to the most recently presented 
item (Kahana & Sekuler, 2002). Here, though, the se-
rial positions preceding the last one produced essentially 
equivalent performance, although, as was mentioned ear-
lier, performance at all serial positions was better than the 
chance level defined by the false alarm rate. This suggests 
that higher dimensional stimuli, instead of promoting a 
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gradual forgetting of previously seen items, allow the last 
item seen to diminish the memory for all previously seen 
items equally. This resembles a result reported previously 
(Phillips, 1974, 1983; Phillips & Christie, 1977).

Because procedures differed between the studies with 
grating and face stimuli, we must be cautious in attrib-
uting various discrepancies in the results to differences 
in stimulus dimensionality alone. But we do believe that 
parallel studies of recognition memory for gratings, faces, 
and other high-dimensional stimuli, as well as studies of 
comparable stimuli from other sensory modalities (Vis-
scher, Kaplan, Kahana, & Sekuler, 2006), will ultimately 
help us understand how the number and structure of per-
ceptual dimensions that make up stimuli contribute to 
human short-term recognition memory.

We should note at least one possible application of the 
present results, to the validity of police lineups. When a 
witness views a simultaneous lineup comprising several 
individuals, the homogeneity of those individuals is an an-
alogue to the within-list homogeneity whose potency was 
demonstrated in Experiments 1 and 2. Extrapolating from 
our results, one would expect that within-list homogene-
ity in a lineup would strongly affect a potential witness’ 
recognition response. Recently, law enforcement officials 
in the United States have been encouraged to substitute 
sequential lineups for the traditional simultaneous proce-
dure (Turtle, Lindsay, & Wells, 2003). Advocates of this 
procedure have claimed that sequential lineups somehow 
enhance discriminability and, thereby, promote accuracy. 
In sequential lineups, witnesses view one lineup member 
at a time and decide whether or not that person is the per-
petrator, prior to viewing the next lineup member. Here, 
witnesses make a yes–no judgment after viewing each sin-
gle person/face, one at a time. This is meant to minimize 
false alarms, by discouraging relative judgments that can 
contaminate simultaneous lineups (Lindsay et al., 1991; 
Steblay, Dysart, Fulero, & Lindsay, 2001). However, Gron-
lund (2004) has shown that the beneficial effect of sequen-
tial lineups arises not from heightened discriminability, 
but from a change in criterion—with a sequential lineup 
promoting a more conservative criterion. Whatever their 
benefit, though, sequential lineups would be immune to 
influences from within-list homogeneity only if there were 
zero carryover of memory from one face/lineup member to 
another, an assumption that begs to be evaluated.

Finally, in all the experiments we have reported here, 
possible contamination of face recognition by emotional 
cues was intentionally avoided. In fact, the set of Wilson 
faces that we used substituted constant generic shapes 
for features that would change shape as emotions were 
expressed. In addition to equation on basic dimensions 
such as contrast and mean luminance, the consistent neu-
tral expression of our faces ruled out emotion as an aid 
to recognition memory. Given emotional expression’s 
known role in recognition (e.g., Gallegos & Tranel, 2005; 
Johansson, Mecklinger, & Treese, 2004; Kaufmann & 
Schweinberger, 2004), it is worth noting that systematic 
variation in the position and/or orientation of eyes, mouth, 
and brows (Ekman & Friesen, 1975) can generate Wilson 
faces that express distinct, easily identified emotions, and 

in varying degree (e.g., Isaacowitz et al., 2006). We plan 
to evaluate how the presence of emotion signals of vary-
ing, calibrated strength might combine with other facial 
information to influence short-term face recognition.
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APPENDIX

Wilson et al. (2002) introduced a method for generating synthetic faces that are well suited for 
model-driven research on various topics, including visual memory. In their scheme, individual 
synthetic faces are derived from grayscale face photographs by digitizing 37 key points: 14 points 
defining head shape, 9 points for the hairline, 4 points for eye locations, 4 points for nose length 
and width, 5 points defining the mouth and lips, and 1 point for brow height. Synthetic faces are 
then reconstructed from these 37 measurements and bandpass filtered with a 2.0-octave-wide 
difference of Gaussian filter with a peak frequency of 10.0 cycles per face width (Wilson et al., 
2002). Several studies have shown that such filtering preserves frequencies needed for face rec-
ognition (Gold et al., 1999; Näsänen, 1999).

By design, synthetic faces eliminate textures, such as skin, hair, wrinkles, and so forth, and 
focus instead on the geometric characteristics of faces. However, this raises the important ques-
tion of whether synthetic faces are sufficiently accurate representations of their original faces 
to be useful in psychophysical experimentation. This question has been answered by requiring 
observers to identify the grayscale photograph from which a synthetic face was derived in a four-
alternative forced choice experiment. The mean across 5 observers was 97.4% correct in matching 
between front view synthetic faces and photographs, and even for matching between 20 side view 
photographs and front view synthetic faces (or vice versa), performance averaged 90.7% correct 
(Wilson et al., 2002). Because chance performance is 25% in these experiments, these data clearly 
demonstrate that synthetic faces capture salient aspects of individual face geometry. Furthermore, 
the database captures known face gender differences: Synthetic female faces have significantly 
smaller heads, rounder chins, thicker lips, and higher eyebrows than do males. Finally, fMRI 
signals from the fusiform face area show that synthetic faces produce BOLD activation that is 
nearly as large as the original grayscale faces from which they are derived (Loffler, Yourganov, 
et al., 2005). Although the Wilson faces are relatively simple geometrically, they still convey suf-
ficient information to characterize individual faces. This essential individuality, which is important 
in episodic memory, is absent from some commonly used face stimuli, such as Brunswik faces 
(Brunswik & Reiter, 1937; Peters et al., 2003; Sigala et al., 2002).
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